JUNTAS DE EXPANSÃO METÁLICAS TERMATIC®

JUNTAS DE EXPANSÃO NÃO-METÁLICAS $FREEFLEX^{\mathbb{R}}$

Grupo Teadit

Teadit Indústria e Comércio Rio de Janeiro / Brasil

Teadit Juntas Campinas / Brasil

Teadit North America Houston / EUA

Teadit International Kufstein / Áustria

Teadit Itália Paratico / Itália

Teadit Argentina Buenos Aires / Argentina

Teadit no 10 Mundo

O grupo **TEADIT®** atua mundialmente na fabricação de produtos na área de vedação e isolamento. Seu compromisso em fornecer produtos de qualidade e buscar soluções que atendam as necessidades mais críticas do mercado, transformou este grupo em líder no mercado industrial.

A liderança da Teadit foi conquistada passo-apasso e é hoje resultado de uma sólida experiência adquirida com investimentos contínuos e no uso eficaz de novas tecnologias, em matérias-primas, produtos e processos de fabricação.

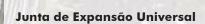
A Teadit está presente na América do Norte através da Teadit North América, em Houston/ Texas, um grande centro de distribuição de produtos que também produz juntas; na Europa, através da Teadit International na Áustria, da Teadit Itália, e da Teadit Germany garante o atendimento completo do mercado comum Europeu, produzindo gaxetas, juntas e produtos de PTFE; na Argentina, a Teadit, possui um centro de distribuição de material, e também oferece atendimento de Postos Avançados de Parada, além da fabricação de juntas. Através da Teadit International na China e Teadit Índia realiza, mais dinamicamente, o atendimento ao continente Asiático.

No Brasil estão localizadas suas duas principais unidades fabris: uma no Rio de Janeiro e outra em Campinas, onde são fabricados fios, filamentos, gaxetas, papelões hidráulicos, tecidos e fitas técnicas, produtos de PTFE, juntas de vedação e de expansão (metálicas e não-metálicas), além de proporcionar a instalação de Postos Avançados de Atendimento, nas maiores empresas do país.

Como resultado natural deste processo contínuo de aperfeiçoamento da qualidade, a Teadit obteve a Certificação ISO 9001 para as fábricas do Rio de Janeiro e Campinas assim como para as unidades fabris da Áustria e da Itália.

SUMÁRIO TERMATIC

2. Definição
3. Variáveis do Projeto7
3.1. Dimensões7
3.2. Tipo de Fluido7
3.3. Pressão7
3.4. Temperatura8
3.5. Movimento8
3.5.1. Axial de compressão8
3.5.2. Axial de extensão8
3.5.3. Lateral8
3.5.4. Deflexão angular8
3.5.5. Torção8
3.6. Forças8
3.6.1. Força de mola8
3.6.2. Forças de pressão9
3.7. Ancoragens, suportes e guias9
3.7.1. Ancoragem principal9
3.7.2. Ancoragem intermediária10
3.7.3. Guias e suportes10
3.7.4. Tipos de guia10
3.7.4.1. Unidirecional10
3.7.4.2. Bidirecional11
3.7.5. Localização das guias11
3.7.6. Suportes11
3.8. Vida Cíclica11
4. Influência das variáveis no desempenho de projeto12
de projeto 17
5. Cálculo da dilatação térmica13
5. Cálculo da dilatação térmica13 6. Componentes de uma junta de expansão14
5. Cálculo da dilatação térmica
5. Cálculo da dilatação térmica 13 6. Componentes de uma junta de expansão 14 6.1. Fole 14 6.1.1. Anéis de reforço 14
5. Cálculo da dilatação térmica 13 6. Componentes de uma junta de expansão 14 6.1. Fole 14 6.1.1. Anéis de reforço 14 6.1.2. Anéis equalizadores 15
5. Cálculo da dilatação térmica 13 6. Componentes de uma junta de expansão 14 6.1. Fole 14 6.1.1. Anéis de reforço 14 6.1.2. Anéis equalizadores 15 6.2. Guia interna 15
5. Cálculo da dilatação térmica 13 6. Componentes de uma junta de expansão 14 6.1. Fole 14 6.1.1. Anéis de reforço 14 6.1.2. Anéis equalizadores 15 6.2. Guia interna 15 6.3. Terminações 15
5. Cálculo da dilatação térmica 13 6. Componentes de uma junta de expansão 14 6.1. Fole 14 6.1.1. Anéis de reforço 14 6.1.2. Anéis equalizadores 15 6.2. Guia interna 15 6.3. Terminações 15 6.4. Tirantes 16
5. Cálculo da dilatação térmica 13 6. Componentes de uma junta de expansão 14 6.1. Fole 14 6.1.1. Anéis de reforço 14 6.1.2. Anéis equalizadores 15 6.2. Guia interna 15 6.3. Terminações 15 6.4. Tirantes 16 6.5. Dobradiças 16
5. Cálculo da dilatação térmica 13 6. Componentes de uma junta de expansão 14 6.1. Fole 14 6.1.1. Anéis de reforço 14 6.1.2. Anéis equalizadores 15 6.2. Guia interna 15 6.3. Terminações 15 6.4. Tirantes 16 6.5. Dobradiças 16 6.6. Anel Cardãnico 16
5. Cálculo da dilatação térmica 13 6. Componentes de uma junta de expansão 14 6.1. Fole 14 6.1.1. Anéis de reforço 14 6.1.2. Anéis equalizadores 15 6.2. Guia interna 15 6.3. Terminações 15 6.4. Tirantes 16 6.5. Dobradiças 16 6.6. Anel Cardãnico 16 6.7. Ligações pantográficas 16
5. Cálculo da dilatação térmica 13 6. Componentes de uma junta de expansão 14 6.1. Fole 14 6.1.1. Anéis de reforço 14 6.1.2. Anéis equalizadores 15 6.2. Guia interna 15 6.3. Terminações 15 6.4. Tirantes 16 6.5. Dobradiças 16 6.6. Anel Cardãnico 16 6.7. Ligações pantográficas 16 6.8. Proteção 17
5. Cálculo da dilatação térmica 13 6. Componentes de uma junta de expansão 14 6.1. Fole 14 6.1.1. Anéis de reforço 14 6.1.2. Anéis equalizadores 15 6.2. Guia interna 15 6.3. Terminações 15 6.4. Tirantes 16 6.5. Dobradiças 16 6.6. Anel Cardãnico 16 6.7. Ligações pantográficas 16 6.8. Proteção 17 6.9. Isolamento térmico 17
5. Cálculo da dilatação térmica 13 6. Componentes de uma junta de expansão 14 6.1. Fole 14 6.1.1. Anéis de reforço 14 6.1.2. Anéis equalizadores 15 6.2. Guia interna 15 6.3. Terminações 15 6.4. Tirantes 16 6.5. Dobradiças 16 6.6. Anel Cardãnico 16 6.7. Ligações pantográficas 16 6.8. Proteção 17


8. Tipos de Juntas de Expansão	20
8.1. Axial simples	20
8.2. Axial com tirantes	20
8.3. Axial dupla	26
8.4. Universal	30
8.5. Universal com tirantes	30
8.6. Dobradiça	36
8.7. Cardânica	36
8.8. Pressão balanceada	42
8.8.1. Axial	42
8.8.2. Com derivação	42
8.9. Pressurizada externamente	42
8.10. Retangulares	42
8.10.1. Câmara Corner	42
8.10.2. Single Miter Corner	43
8.10.3. Double Miter Corner	43
8.10.4. Round Corner	43
9. Memória de cálculo	44
10. Materias	46
11. Meio ambiente	47
12. Ensaios	47
12.1. Ensaio com liquido penetrante	47
12.2. Teste de pressão	47
12.3. Ensaio radiográfico	47
12.4. Outros ensaios	47
13. Transporte e Manuseio	48
13.1. Dispositivo de transporte	48
13.2. Armazenagem	48
13.3. Instruções de instalação	48
14. Instalação	48
15. Recomendações de Instalação	49
15.1. Pontos importantes	49
16. Inspeções	50
16.1. Inspeção ou teste de pressão antes do start-up	50
16.2. Inspeção durante e imediatamente	
após o teste de pressão16.3. Inspeções periódicas em serviço	
17. Causas e Falhas Formulários de Juntas de Expansão	51 53
FORMULATION OF MINIAS OF PXDADSON	2.1

As Juntas de Expansão TERMATIC® são produzidas no parque fabril da TEADIT Juntas, em Campinas.

Sua Engenharia de Produtos trabalha continuamente na busca das soluções específicas para cada aplicação e no desenvolvimento de produtos de alta performance.

Além de desenvolver novos produtos e processos de fabricação mais avançados, a TEADIT oferece aos seus clientes a melhor assistência técnica-comercial instalada de Norte à Sul do Brasil.

Segmento: Mineração Aplicação: Dutos de Hood / Pelotização

Pressão: 0,5 bar Temperatura: 335 °C

SUPORTAM AS MAIS SEVERAS CONDIÇÕES DE OPERAÇÃO, COMO ALTA TEMPERATURA E PRESSÃO.

Junta de Expansão Universal Cardânica projetada para aplicação na vertical superior do turbo expansor, com hardware de atracação dos sistemas cardãs em anéis flutuantes modelados por software de cálculo de elementos finitos (FEA). Possui foles em lâminas duplas redundantes de Inconel® 625 LCF, com indicador de vazamento.

O projeto de fabricação diferenciado permite operações em temperatura de até 830° C e pressão de 0,17 kgf/cm², além de atingir movimentos laterais máximos de até 185 mm.

Exemplos de Aplicação de Juntas de Expansão TERMATIC®

Junta de Expansão de Pressão Balanceada

Segmento: Usina Siderúrgica. Aplicação:

Unidade de Combustíveis de Alto Forno. **Temperatura Máxima:** 300° C

Junta de Expansão Universal com Derivação

Segmento:

Usina Šiderúrgica. **Aplicação:** Unidade de Laminação a Quente. **Temperatura Máxima:** 60° C

Junta de Expansão Cardânica Especial

Segmento: Usina Siderúrgica.

Aplicação:Sistema Lavador de Gases de Alto Forno. **Temperatura Máxima:** 250° C

Junta de Expansão Universal Dobradiça

Segmento:

Usina Siderúrgica.

Aplicação:
Sistema Lavador de Gases.
Temperatura Máxima: 300° C

Junta de Expansão Cardânica

Segmento:

Açúcar e Álcool **Aplicação:** Saída de Turbina à Vapor. **Temperatura Máxima:** 360° C

Junta de Expansão Universal Retangular

Segmento:Mineração. **Aplicação:**Usina de Beneficiamento de Cobre.

Temperatura Máxima: 317° C

Soluções para Sistemas de Tubulação de Turbo-Expansores

Junta de Expansão **Dupla Cardânica**

Segmento: Refinaria de Petróleo. Aplicação: Linha de Entrada de Turbo-Expansor. Temperatura Máxima: 980° C

Junta de Expansão **Universal Dobradiça** (com Refratário Interno - cold wall)

Segmento: Refinaria de Petróleo. Aplicação: Linha de Saída de Turbo-Expansor. Temperatura Máxima: 830° C

Junta de Expansão Cardânica

Segmento: Refinaria de Petróleo. Aplicação: Linha de Entrada de Turbo-Expansor. Temperatura Máxima: 980° C

Junta de Expansão Dobradiça

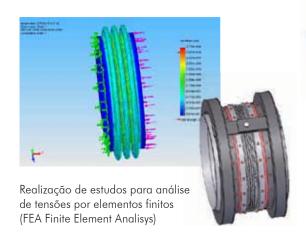
Segmento: Refinaria de Petróleo. Aplicação: Linha de Entrada de Turbo-Expansor. Temperatura Máxima: 980° C

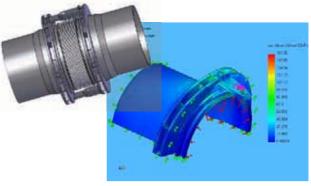
Junta de Expansão Axial Balanceada (com Hot Blanket)

Segmento: Refinaria Aplicação: Craqueamento Temperatura Máxima: 732° C

Junta de Expansão Axial e **Universal Atirantada**

Segmento: Indústria Química. Aplicação: Gases de Processo de Negro Fumo Temperatura Máxima: 360° C




TECNOLOGIA DESDE O PROJETO

Teadit aplica tecnologia de última geração no desenvolvimento de seus produtos. Um exemplo disso é a utilização de softwares de análise por elemento finito que permitem a criação de modelos virtuais, em 3D, das juntas de expansão e suas estruturas metálicas.

Além de simular diferentes condições de operação, os aplicativos permitem analisar as interações entre os vários componentes das juntas, efetuar estudos mecânicos e térmicos e realizar simulações de teste hidrostático, o que indica a possibilidade de falhas no projeto. Todo esse trabalho é oferecido ao cliente em forma de relatórios para sua analise e aprovação do projeto.

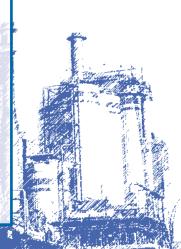
A partir dessas informações os projetos recebem várias otimizações que aumentam a vida útil e performance da Junta de Expansão

TUDO O QUE SEU PROJETO PRECISA

AMPLITUDE DE LINHA DE FABRICAÇÃO:

A TEADIT possui a linha mais variada de Juntas de Expansão que inclui os tipos Axial, Universal, Dobradiça, de Pressão Balanceada e Cardânica e Não-Metálicas, entre outras.

SEGURANÇA E GARANTIA:


Projetadas e fabricadas segundo as normas EJMA, FSA e ASME, por engenheiros e técnicos altamente especializados, solucionam problemas de dilatação térmica, movimentação e vibração nas mais severas condições de operação.

ECONOMIA, REDUÇÃO DE CUSTOS DE PROJETO E DE OPERAÇÃO:

As Juntas de Expansão TERMATIC, da Teadit, permitem grande flexibilidade de aplicação e projeto, minimizando as perdas de carga e de energia, reduzindo custos de implementação, instalação e operação, com o mais elevado nível de qualidade e segurança.

PROGRAMA DE CÁLCULO:

Baseado na norma EJMA, permite a otimização e o dimensionamento preciso de juntas de expansão propiciando racionalização de custos

1. Introdução

expansão ou contração térmica em tubulações, dutos e equipamentos que trabalham com fluidos quentes ou frios, ou que estão expostos a grandes variações de temperatura ambiente, é uma dificuldade freqüentemente encontrada no projeto destes sistemas.

Entre os métodos existentes para compensar estas variações dimensionais o uso de Juntas de Expansão de Fole Metálico Teadit é uma das alternativas preferidas em virtude das suas vantagens. Quando comparadas com outras soluções como liras ou curvas, as Juntas de Expansão Teadit permitem grande flexibilidade, minimizam perdas de carga e de energia, reduzindo os custos de projeto e de instalação.

Fabricando Juntas de Expansão desde 1970, a Teadit Juntas possui grande experiência nas mais diferentes indústrias, como refinarias de petróleo, petroquímicas, indústrias químicas, açúcar e álcool, cimento, mineração, ar condicionado e outras aplicações onde é necessário compensar dilatações térmicas.

O presente catálogo é referencial e auxilia no sentido do entendimento de como funcionam as juntas de expansão e suas diversas aplicações. Caso existam solicitações ou aplicações especiais que não possam ser atendidas pelos produtos constantes neste catálogo, um projeto especial deve ser solicitado à Engenharia da Teadit Juntas. Para tanto, utilize-se do formulário que se encontra no final deste catálogo.

2. Definição

este Catálogo, Junta de Expansão é definida como uma junta composta de um ou mais foles metálicos para absorver variações dimensionais provocadas pela expansão ou contração térmica em uma tubulação, duto ou equipamento.

3. Variáveis de Projeto

ara um desempenho adequado e seguro de uma junta de expansão, é imprescindível entender que trata-se de um produto altamente especializado e que requer cuidados especiais no seu projeto, instalação e operação. Na maioria das aplicações de juntas de expansão, antes de determinar-se qual o tipo, materiais e outros componentes, é necessária uma análise cuidadosa do sistema. A seguir, estão listadas as principais variáveis que devem ser consideradas no projeto de uma Junta de Expansão.

3.1. DIMENSÕES

O diâmetro da tubulação ou as dimensões de dutos e o comprimento total da junta influem no seu projeto, limitando a sua pressão de trabalho e a capacidade de absorver determinados movimentos.

3.2. TIPO DE FLUIDO

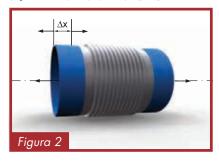
Os produtos em contato com a junta de expansão devem ser analisados. Alguns produtos podem causar erosão ou corrosão do material da junta. Se a tubulação for lavada periodicamente, o fluido de lavagem também deve ser especificado.

3.3. PRESSÃO

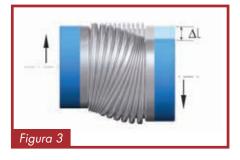
A pressão é uma das variáveis mais importantes no projeto de uma junta de expansão. As pressões máxima, mínima e de teste devem ser consideradas. Se existir a possibilidade de transientes de pressão, as suas conseqüências devem ser avaliadas.

3.4. TEMPERATURA

A temperatura de operação afeta a pressão máxima, tensões admissíveis, vida útil e especificação do tipo de material. A correta definição da temperatura é importante pois valores muito elevados podem requerer materiais especiais ou, se muito baixos, podem provocar a falha prematura da junta.


3.5. MOVIMENTOS

A determinação dos movimentos a serem absorvidos é imprescindível para a especificação correta de uma junta de expansão. Devem ser verificados, além dos movimentos de origem térmica, os de outras fontes, tais como, vibrações e desalinhamentos. Os movimentos absorvidos por uma junta de expansão podem ser:


1) AXIAL DE COMPRESSÃO

2) AXIAL DE EXTENSÃO

3) LATERAL

4) DEFLEXÃO ANGULAR

5) Torção

: o movimento de torção provoca elevadas tensões na junta de expansão e deve ser evitado. Juntas de expansão submetidas a esforços de torção devem ser projetadas especificamente para esta finalidade.

3.6. FORÇAS

As estruturas, ancoragens e suportes das tubulações, dutos e equipamentos onde estão instaladas juntas de expansão devem suportar, além das forças normais em sistemas deste tipo, duas forças adicionais originadas pelas juntas de expansão:

3.6.1. FORÇA DE MOLA

É a força necessária para defletir uma junta de expansão. Os foles de uma junta de expansão se comportam como se fossem uma mola, as ancoragens devem ser projetadas para resistir a esta força.

A amplitude da força de mola (figura 6) é determinada multiplicando-se o valor da constante de mola pelo movimento absorvido. As constantes de mola são axial, lateral e angular.

Por exemplo, se uma junta para tubulação de diâmetro nominal 10 polegadas tiver uma constante de mola axial de 13 kgf/mm e absorver um movimento axial de compressão de 25 mm, podemos calcular a força de mola:

 $F_m = movimento x constante de mola$ $<math>F_m = 25 \times 13 = 325 \text{ kgf}$

3.6.2. FORÇA DE PRESSÃO

A força de pressão é uma condição criada pela instalação de um elemento flexível, a junta de expansão, em uma tubulação rígida pressurizada. É uma função da pressão do sistema, do diâmetro do fole e da altura da corrugação. A Figura 7 (abaixo) mostra o efeito da pressão em um fole: pressões positivas tendem a estender o fole e negativas a comprimir. A amplitude da força de pressão pode ser muito elevada, superando todas as demais forças combinadas. Calcula-se a amplitude da força de pressão multiplicando-se a área efetiva do fole pela pressão do sistema. A área efetiva é uma função do diâmetro médio do fole que é determinada pela altura da corrugação. O diâmetro médio é, normalmente, maior que o diâmetro da tubulação.

Por exemplo, usando a mesma junta do exemplo anterior, é cuja área efetiva é de 590cm², para uma pressão de 10 Kgf/cm² (150 psi), podemos calcular a força de pressão:

 $F_p =$ área efetiva x pressão

 $F_n = 590 \times 10 = 5900 \text{ kgf}$

Instabilidade de Coluna e Instabilidade de Plano

Um fole que seja submetido à pressão interna assemelha-se a uma coluna submetida à um esforço de compressão; isto é, existe um valor máximo de compressão que, se superado, fará com que a coluna apresente uma flambagem. De forma análoga, existe um limite de pressão interna do fluido que uma vez atingido e/ou ultrapassado gera uma instabilidade no fole. Esta instabilidade caracteriza-se pela tendência do fole assumir uma forma de "S". Chama-se de "Instabilidade de Coluna" ou flambagem. A tendência à "Instabilidade de Coluna", é inversamente proporcional a quantidade de corrugações que existem em uma junta.

Existe uma outra causa de instabilidade, por excesso de pressão interna nos foles, chamada de "Instabilidade de Plano". Caracteriza-se pela alteração de paralelismo entre as laterais de duas ou mais corrugações consecutivas.

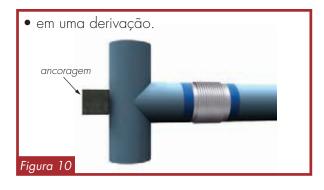
Normalmente a "Instabilidade de Plano" ocorre em pressões superiores à da "Instabilidade de Coluna".

Deve-se assegurar que os valores de pressão de "Instabilidade de Coluna" e "Instabilidade de Plano" sejam sempre superiores às pressões de projeto e de teste da junta.

3.7. ANCORAGENS, SUPORTES E GUIAS

Ao projetar um sistema com juntas de expansão é necessário considerar a melhor localização dos elementos de suporte da tubulação. Definem-se estes elementos da seguinte forma:

3.7.1. ANCORAGEM PRINCIPAL


Uma ancoragem principal deve ser projetada de forma a resistir às forças e momentos de cada ramo da tubulação a ela ancorado. Havendo juntas de expansão no sistema, esta ancoragem deve resistir às forças de pressão e de mola, forças oriundas do movimento do fluido na tubulação (força de inércia), esforços provocados pelo atrito nas guias e suportes e peso da tubulação. Em

certas situações também devem ser considerados outros esforços como, por exemplo, carga de vento.

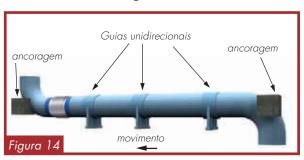
Em um sistema com juntas de expansão a ancoragem principal pode ser instalada conforme apresentado nos exemplos a seguir:

3.7.2. ANCORAGEM INTERMEDIÁRIA

A ancoragem intermediária é projetada para resistir a todos os esforços, exceto a força de pressão de cada ramo da tubulação a ela ancorada. A força de pressão é absorvida pela ancoragem principal ou por acessórios próprios da junta de expansão, tais como tirantes, dobradiças, anéis cardânicos, etc.

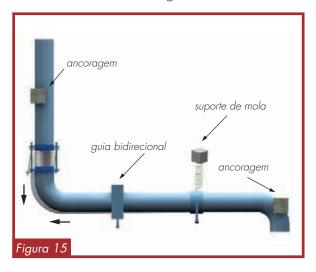
3.7.3. GUIAS E SUPORTES

O correto alinhamento de uma tubulação nas proximidades de uma junta de expansão, é de extrema importância para o seu perfeito funcionamento. As guias e suportes são necessários para assegurar que a junta de expansão execute o movimento previsto e evitar a flambagem da tubulação, conforme mostrado na Figura 13.

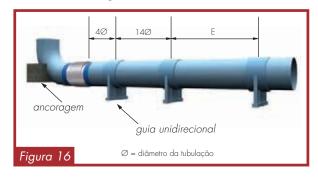


: a flambagem é causada pela flexibilidade da junta de expansão e pela força de pressão que fazem a tubulação comportar-se como uma coluna carregada.

3.7.4. TIPOS DE GUIAS


3.7.4.1. UNIDIRECIONAL

Permite o movimento em uma só direção, conforme mostrado na Figura 14:


3.7.4.2. BIDIRECIONAL

Permite o movimento em um plano (duas direções), conforme mostrado na Figura 15:

3.7.5 LOCALIZAÇÃO DAS GUIAS

Ao posicionar guias para aplicações com movimento exclusivamente axial é, normalmente, recomendado que a junta de expansão seja instalada próxima de uma ancoragem. A primeira guia deve estar a uma distância máxima do fole de até 4 vezes o diâmetro da tubulação, a segunda guia a uma distância da primeira guia de até 14 vezes o diâmetro da tubulação, conforme mostrado na Figura 16.

O espaçamento máximo (E) das demais guias está indicado na Tabela 1.

3.7.6. SUPORTES

Um suporte de tubulação permite o livre movimento da mesma suportando o peso da tubulação e seus acessórios, tais como válvulas e isolamento térmico, bem como o peso do fluido. Os suportes não substituem as guias e ancoragens. Um exemplo de suporte está demonstrado na figura 15.

3.8. VIDA CÍCLICA

Um ciclo é definido como um movimento completo da tubulação desde a posição inicial até a posição de operação, voltando novamente à posição inicial.

A vida cíclica é definida como o número total de ciclos previstos para a junta resistir, a partir de testes realizados em temperatura ambiente e condições de operação simuladas.

A vida cíclica depende da amplitude da variação das tensões às quais o fole está submetido.

Nos foles fabricados com aços inoxidáveis austeníticos, a operação de conformação provoca o encruamento do material, elevando a sua resistência à fadiga. Desta maneira, não é considerado benéfico fazer recozimento ou alívio de tensões, após a conformação do fole.

Exceto quando solicitado, as Juntas de Expansão Termatic, não sofrem nenhum tratamento térmico antes, durante ou após a sua fabricação.

Tabela 1 - Espaçamento Máximo entre Guias - E

			Espaçamento Máximo entre Guias (m)														
Diâmetro Nominal (pol.)		3	4	5	6	8	10	12	14	16	18	20	24	30	36	42	48
Projeto	5	9.7	13.4	16.4	17.0	21.9	27.4	29.2	30.7	34.4	38.1	40.5	46.3	51.8	59.4	67.0	70.1
Pressão de P (bar)	10	7.0	9.7	11.2	12.5	15.8	19.5	21.3	22.2	24.4	27.4	28.9	32.9	36.6	42.7	46.6	49.4
Press	20	5.2	6.7	7.9	8.8	11.3	13.7	15.2	16.1	17.4	19.2	20.7	23.5	26.2	30.1	33.2	31.7

4. Influência das Variáveis no Desempenho de Projeto

projeto de uma junta de expansão é uma tarefa complexa que precisa atender a requisitos, na maioria dos casos, conflitantes. Por exemplo, pressões elevadas requerem maiores espessuras do fole, reduzindo a sua capacidade de absorção de movimentos. A escolha de um projeto adequado é dificultada também pelo grande número de variáveis a serem consideradas, tais como: diâmetro do fole, movimentos a serem absorvidos, pressão e temperatura de trabalho, influência do meio ambi-

A pressão máxima de trabalho pode ser aumentada com o uso de anéis de reforço, pelo

ente, velocidade do fluxo, tipo de fluido, etc.

aumento do número de lâminas ou espessura do fole. Entretanto, o aumento da espessura reduz significativamente a capacidade de absorver movimentos e a vida cíclica da junta.

A força de mola pode ser reduzida aumentando a altura das corrugações e/ou reduzindo a espessura do fole. Em ambos os casos a pressão de trabalho também se reduz.

A pressão de trabalho também pode provocar a flambagem do fole, conforme explicado na página 11, em Vida Cíclica.

A tabela a seguir mostra como as diversas variáveis de projeto se relacionam entre si:

Tabela 2 - Variáveis de Fole

VARIAÇÃO	Pressão de Instabilidade	Vida Cíclica	Movimento Axial	Movimento Lateral	Movimento Angular	Constante de Mola Axial	Constante de Mola Lateral	Constante de Mola Angular	Força de Pressão	
Espessura de Lâmina	Maior	+	-	-	-	-	+	+	+	=
Espessora de Lamina	Menor	-	+	+	+	+	-	-	-	=
Altura da Corrugação	Maior	-	+	+	+	+	-	-	-	+
Alford da Corrugação	Menor	+	-	-	-	-	+	+	+	-
Número de Lâminas	Maior	+	=	=	=	=	+	+	+	=
Numero de Laminas	Menor	-	=	=	=	=	-	-	-	=
Diâmetro	Maior	+	=	=	-	-	+	+	+	+
Diametro	Menor	-	=	=	+	+	-	-	-	-
Número do comunicación	Maior	-	+	+	+	+	-	-	-	=
Número de corrugações	Menor	+	-	-	-	-	+	+	+	=

Legenda:

- indica que não há variação.
- indica que há uma aumento de valores.
- indica que há uma diminuição de valores.

Exemplo:

Considerando que tenhamos dois foles iguais com espessuras de lâminas diferentes, o movimento lateral, do fole com espessura maior, será menor.

5. Cálculo da Dilatação Térmica

dilatação térmica entre dois pontos fixos situados em um trecho reto de tubulação, pode ser facilmente calculada com o auxílio da Tabela 3. Os fatores podem ser interpolados para valores intermediários de temperatura.

$$\Delta L = L \{ (Ft_{m\'axima}) - (Ft_{m\'inima}) \}$$

onde,

 $\Delta L = expansão em mm$

L = comprimento reto a calcular, em metros

Ft_{máxima} = fator para temperatura máxima

Ft_{mímima} = fator para temperatura mínima

Exemplo:

Calcular a dilatação de um trecho de tubulação reta em aço carbono com 30 metros de comprimento que opera entre a temperatura ambiente (21 °C) e 350 °C:

$$L = 30 \text{ m}$$

Ft $_{m\acute{a}x}$ = 4,36 (coluna "A" referente ao aço carbono; temperatura 350 °C)

Ft mín = 0,00 (coluna "A" referente ao aço carbono; temperatura 21 °C)

 $\Delta L = 30 \cdot \{ (4,36) - (0,00) \} = 130.8 \text{ mm}$

Tabela 3 - Dilatação Térmica dos Materiais da Tubulação

Tempero	atura(*)	A	В	С	D	E	F	G	Н	1
° C	°F				Fat	or em mm	/m			
-100	-148	-1.20	-1.13	-1.8 <i>7</i>			-1.36		-1.41	-2.38
-50	-58	-0.74	-0.70	-1.10		-1.16	-0.82		-0.86	-1.47
0	32	-0.23	-0.21	-0.32		-0.36	-0.25		-0.25	-0.45
21	70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
50	122	0.33	0.32	0.49	0.46	0.49	0.37	0.41	0.38	0.67
100	212	0.91	0.86	1.33	1.25	1.35	1.05	1.13	1.05	1.83
150	302	1.53	1.44	2.19	2.06	2.20	1. <i>75</i>	1.94	1.76	3.09
200	392	2.19	2.03	3.09	2.87	3.13	2.48	2.82	2.48	4.37
250	482	2.88	2.67	4.00	3.68	4.04	3.23	3.66	3.21	5.71
300	572	3.60	3.33	4.91	4.49		4.00	4.51	3.95	7.09
350	662	4.36	4.00	5.85	5.30		4.79	5.36	4.71	
400	752	5.15	4.70	6.81	6.11		5.61	6.24	5.49	
450	842	5.97	5.43	7.80	6.96		6.44	<i>7</i> .13	6.31	
500	932	6.80	6.15	8.80	7.86		7.27	8.04	7.17	
550	1022	7.61	6.89	9.82	8.76		8.11	8.97	8.02	
600	1112	8.47	7.63	10.84	9.67		8.97	9.91	8.87	
650	1202	9.27	8.35	11.86	10.66		9.85	10.87	9.74	

Legenda:

A = Aços carbono, C-Mo e 3Cr-Mo

B = Aços de 5Cr-Mo a 9Cr-Mo

C = Aços inoxidáveis austeníticos (18Cr - 8Ni)

D = Aço inoxidável 310 (25Cr - 20Ni)

E = Cobre

F = Níquel 200

G = Inconel 800, 825

H = Inconel 600, 625 e 691

I = Alumínio

^(*) Para temperaturas superiores ou inferiores aos limites indicados na tabela, consultar Teadit Juntas

6. Componentes de

UMA JUNTA DE EXPANSÃO

6.1. FOLE

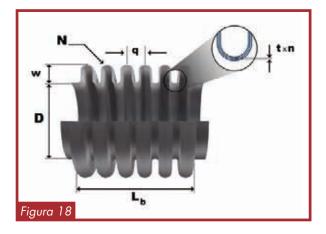
É o principal componente de uma junta de expansão. Pode ter uma ou mais corrugações. Normalmente é fabricado com material de espessura mais fina que o restante da tubulação. O fole pode ser fabricado com uma ou mais lâminas (fole multi-laminar), isto é, a espessura final de lâmina necessária para conter a pressão interna pode ser conseguida ou com uma única lâmina do material ou com uma composição de várias lâminas de espessuras menores.

Um fole com construção multilaminar tem freqüentemente uma menor constante de mola do que um fole constituído de uma única lâmina, para uma mesma aplicação. A menor espessura de material, no caso dos foles multilaminares, experimenta uma menor tensão do que uma lâmina mais espessa para a mesma deflexão. Isso significa que um fole multi-laminar apresenta uma maior vida cíclica.

As principais variáveis de um fole são (figura 18):

D = diâmetro interno

N = número de corrugações


q = passo da corrugação

w = altura da corrugação

t = espessura do material de cada lâmina

n = número de lâminas

L_b = comprimento corrugado

Fole de lâminas redundantes

Um fole é chamado de redundante (ou de segurança intrínseca) quando é composto de duas lâminas sendo que uma única lâmina (a primeira) é suficientemente espessa para resistir a pressão interna da junta. A segunda lâmina é a lamina de segurança, ou seja, na eventualidade de falha, da primeira lâmina, ela impede o vazamento do fluído para o meio ambiente.

Existem dispositivos (por exemplo: manômetro) que instalados entre as lâminas do fole permitem monitorar a pressão entre as lâminas, possibilitando a indicação de falha do fole.

Se a pressão indicada no dispositivo for zero, o fole está operando normalmente. Se a pressão se alterar, indica uma falha na lâmina interna, que exige a substituição programada do fole.

Este dispositivo é utilizado quando o fluído é extremamente perigoso ao meio ambiente, ou quando a linha não pode sofrer paradas não-programadas.

6.1.1. ANÉIS DE REFORÇO

São anéis instalados na raiz das corrugações para reforçar os foles, **permitindo pressões de trabalho mais elevadas.**

6.1.2. ANÉIS EQUALIZADORES

São anéis com perfil tipo Gota ou tipo T que, além de reforçar o fole para resistir à pressões internas elevadas, limitam o movimento axial de compressão, evitando o esmagamento das corrugações.

6.2. GUIA INTERNA

Guias internas são usadas para reduzir os efeitos da velocidade do fluido no fole, **reduzindo a turbulência**, **erosão e vibrações**.

Recomenda-se o uso de guia interna quando a velocidade de fluxo excede aos seguintes valores:

- Ar, vapor e outros gases:
 - tubulações de até 6" de diâmetro:
 1,22 m/s por polegada de diâmetro
 - acima de 6" de diâmetro:
 7,6 m/s por polegada de diâmetro
- Água e outros líquidos:
 - tubulações de até 6" de diâmetro:
 0,61 m/s por polegada de diâmetro
 - tubulações acima de 6" de diâmetro:
 3,0 m/s por polegada de diâmetro

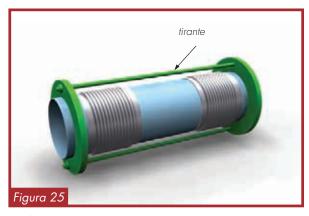
Quando o fluxo turbulento é gerado a uma distância de até 10 vezes o diâmetro da tubulação, a velocidade do fluxo deve ser multiplicada por 4 ao aplicar o critério acima.

Em certas situações, o fluxo do fluido em contato direto com o fole pode provocar ressonância e a sua falha prematura. Estes casos devem ser avaliados individualmente.

Em fluidos com viscosidade elevada, como o piche, por exemplo, a colocação de guias deve ser cuidadosamente analisada para evitar o acúmulo de fluido nas corrugações, prejudicando, desta forma, o funcionamento da junta de expansão.

6.3. TERMINAÇÕES

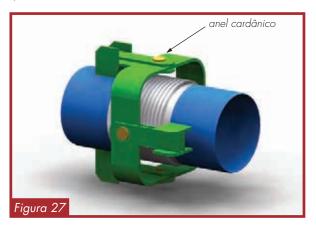
As juntas de expansão podem ser fornecidas em distintas modalidades de terminação, sendo que as mais comuns são:



6.4. TIRANTES

Os tirantes (figura 25) são usados para:

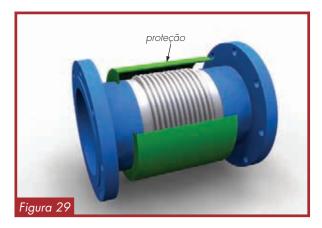
- resistir à força de pressão, no caso de falha das ancoragens;
- limitar o movimento a ser absorvido pela junta ou
- resistir à força de pressão, permitindo apenas movimentos laterais.


6.5. Dobradiças

As dobradiças (figura 26) são usadas nas juntas de expansão para permitir somente movimento angular em um plano, além de resistir à força de pressão.

6.6. ANEL CARDÂNICO

São usados anéis cardânicos (figura 27) nas juntas de expansão para permitir movimentos angulares em qualquer plano e resistir à força de pressão.


6.7. LIGAÇÕES PANTOGRÁFICAS

As ligações pantográficas (figura 28) são usadas nas juntas de expansão universais para distribuir o movimento igualmente entre os dois foles. Em juntas que apresentam isolamento térmico interno em concreto refratário, as ligações pantográficas têm a função de impedir o esmagamento do fole inferior, quando a junta é instalada no sentido vertical ou inclinado e dar suportação extra ao tubo intermediário. As ligações pantográficas não são projetadas para absorver força de pressão.

6.8. PROTEÇÃO

Coberturas sobre o fole podem ser usadas para protegê-lo de danos causados por agentes externos, como: impacto de objetos e danos de manuseio.

6.9. ISOLAMENTO TÉRMICO

Quando a temperatura do fluido exceder a máxima recomendada para o material do fole, devese usar isolamento térmico entre o fole e a guia interna.

6.10. CONEXÕES PARA DRENOS

Conexões para drenos são usadas na parte inferior das corrugações para drenar o fole, evitando o acúmulo de condensado (figura 31).

6.11. CONEXÕES PARA PURGA

A injeção de fluido, normalmente vapor, é usada para limpar a cavidade entre o fole e a guia interna, como por exemplo no caso de fluidos altamente viscosos, ou ainda quando o objetivo é impedir a entrada de materiais particulados. Exemplo: catalizadores em juntas de UFCC's (figura 31).

7. Especificação de Juntas

Siga os passos abaixo para orientar-se sobre como especificar uma junta, definir um tipo de junta e consultar suas variáveis nas tabelas respectivas. Para ilustrar esta orientação, os exemplos estão todos embasados na seguinte situação hipotética de exemplificação:

Exemplo: Movimentos a serem absorvidos: axial de compressão 16 mm e lateral de 1 mm Pressão 123psi, temperatura 172°C, diâmetro nominal 4 polegadas e conexão flangeada

PASSO 1 - Verifique se as condições de pressão e temperatura estão dentro dos limites abrangidos por este catálogo, ou seja: pressão máxima de 300 psi e temperatura máxima de 400°C. Caso contrário preencha o formulário no final deste catálogo e envie para TEADIT Juntas.

Exemplo:

a - pressão de 123 psi (sim, é menor que 300 psi) b - temperatura de 172°C (sim, é menor que 400°C) PASSO 2 - Escolha na Tabela - Opção de Juntas, o número da tabela que contém o tipo da junta adequado, em função dos movimentos a serem absorvidos e sua pressão de operação máxima, como mostrado na tabela abaixo.

Exemplo: Pressão de operação 123 psi com movimentos axiais e laterais de pequena amplitude levam à opção pela Tabela 5.

Tabela - OPÇÃO DE JUNTAS

Pressão	Moviment	os Axiais	Movimen	Movimentos		
Máxima	de pequena	de grande	de pequena	de grande	angulares	
(psi)	amplitude	amplitude	amplitude	amplitude		
50	Tabela 4	Tabela 7	Tabeld 4	Tabela 10	Tabela 13	
150	Tabela 5	Tabela 8	Tabela 5	Tabela 11	Tabela 14	
300	Tabela 6	Tabela 9	Tabela 6	Tabela 12	Tabela 15	

PASSO 3 - Definida a numeração da tabela, escolha na mesma o diâmetro da junta.

Exemplo: Junta com diâmetro nominal de 4 polegadas

Tabela 5 JUNTA DE EXPANSÃO AXIAL CLASSE 150 PSI

DN	Mov	imentos Não S	imultâneos	Co	onstantes de M	\ola	Pressão	Area	Comprimento L / Peso Unitário					
DIN	Axia	Latera	Angular	Axia	Lateral	Angular	Máxima	Efetiva	Ponta	Solda	Flor	nges	Van	Stone
(pol.	.) (mm)	(mm)	(graus)	(kgf/mm)	(kgf/mm)	Kgf.m / °	(Kgf/cm²)	(cm ²)	(mm)	(kg)	(mm)	(kg)	mm	(kg)
	12	2	3	38,1	80,6	0,3	27,0	29,0	190	1,1	104	5,0	187	6,3
2	18	4	4	28,6	34,0	0,2	27,0	29,0	207	1,2	121	5,1	205	6,3
	25	5	10	20,8	13,1	0,2	27,0	29,0	240	1,4	147	5,3	230	6,5
	12	2	3	45,9	141,7	0,6	27,0	43,0	190	1,7	112	7,0	187	8,6
2.1/	'2 18	4	4	34,4	59,8	0,4	27,0	43,0	207	1,8	130	7,1	205	8,7
	25	5	10	25,0	23,0	0,3	27,0	43,0	240	2,1	155	7,3	230	8,9
	12	2	3	57,5	262,5	1,0	27,0	64,0	190	2,2	112	7,9	187	10,2
3	15	4	4	43,1	110,7	0,8	27,0	64,0	207	2,3	130	8,0	205	10,3
	25	5	9	26,6	25,8	0,5	25,0	64,0	240	2,5	195	8,2	247	10,5
M	12	2	3	65,7	390,2	1,5	27,0	83,0	190	2,6	112	10,8	213	14,1
\ 3.1/	'2 15	4	4	49,3	164,6	1,1	27,0	83,0	207	2,7	130	11,0	230	14,2
\ _	25	5	9	28,2	30,7	0,7	25,0	83,0	260	3,2	195	11,4	281	14,7
	15	3	3	62,6	287,5	1,8	24,0	105,0	207	3,3	130	13,0	230	16,8
4	20	5	4	46,9	121,3	1,4	24,0	105,0	225	3,6	185	13,3	251	17,0
	30	0	9	31,3	35,9	0,9	25,0	105,0	285	4,3	245	13,8	295	17,6

PASSO 4 - Para cada diâmetro existem 3 opções de junta, conforme a amplitude de movimentos desejada. Escolha a opção que atende ou supera os movimentos.

Exemplo: Junta com movimento axial de 16 mm, lateral de 2 mm. Dentre as opções oferecidas, a segunda (axial: 20mm, lateral: 5mm, angular: 4 graus) é a que atende aos movimentos.

PASSO 5 - Caso existam movimentos simultâneos que ocorrem ao mesmo tempo) faça a checagem conforme Item 1 das Notas Explicativas no início de cada tabela.

Exemplo: checar movimentos simultâneos para junta com 16 mm de compressão axial e 2 mm de compressão lateral com a opção de movimentos feita na Tabela 5 do passo 4 (axial: 20mm, lateral: 5mm, angular: 4 graus) segundo item 1 das Notas Explicativas da tabela.

 $\frac{16}{20} + \frac{1}{5} + \frac{0}{1} \le 1,0 \rightarrow 0,80 + 0,20 + 0 = 1,00$ logo a junta ATENDE aos movimentos de forma simultânea

os movimentos tabelados são considerados para movimentos não simultâneos. Caso ocorram movimentos simultaneamente, a seguinte erificação deve ser satisfeita

movimento axial tabelado + mo	ovimento lateral tabelo	_ +	o angular tabelado	≤ 1,0	
2. Os movimentos tabelados são considerados para um desejável uma meios, ada um, os movimentos tabelados				do de cálculo do EJM	A. Caso seja
Vida cíclica desejada (nº de ciclos)	5.000	10.000	25.000	50.000	1.000.000
Eator de redução dos movimentos tabelados	0,801	0,683	0,563	0,493	0.214

- As condições descritas nestas tabelas têm uma temperatur.

 Máximo valor do movimento axial de extensão é de 50% do movimento.
- 5. Teste hidrostático para as juntas foi considerado:

pressão teste = 1,5 x pressão projeto

- 6.1. A pressão máxima indicada, refere-se a menor das pressões que causam instabilidade no fole: instabilidade de coluna ou instabilidade de plano e não
- 6.1. A pressoo maxima indicada, ieterle-se a menor das pressões que causam instabilidade no tole: <u>instabilidade de colung</u> ou <u>instabilidade de plano</u> e nao deve nunca ser ultrapasada, que resia em operação ou em teste hidrostático
 6.2. Este valor de pressão máximo não deve ser utilizado como pressão máxima de projeto.
 7. A furação e faceamento dos flanges segue o padrão ASME B16.5 em sua classe de pressão correspondente, exceto para juntas Classe 50 psi que seguem o padrão de furação segundo ASME B16.5 150 psi
 8. Os terminais para solda são fabricados com bisel de 37,5°, espessura sch 40 para diâmetros até 8 polegadas.
 9. O material de fole considerado nas tobelas de ASTM A-240 17 9304 ou 17 321. Outros materiais, sob consulta.
 10. Para pressões e/ou diâmetros não atendidos nesta tabela, preencher o formulário que se encontra no final do catálogo e encaminhá·lo para TEADIT JUNTAS.

PASSO 6 - A junta especificada tabela, possui uma vida calculada de 2000 ciclos. Caso seja desejável uma maior vida útil, utilizar os fatores de redução do item 2 das Notas Explicativas da tabela escolhida.

PASSO 7

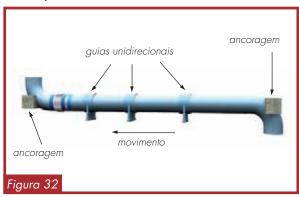
escolha a conexão desejada: ponta para solda, Flange ou Flange Solto (Van Stone). Verifique o comprimento face a face informado na tabela.

Exemplo: Conexão flangeada

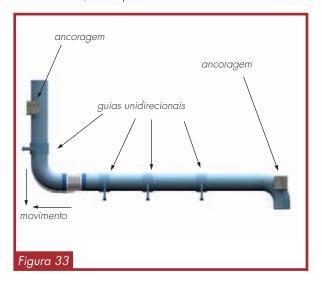
Tabela 8.2 JUNTA DE EXPANSÃO AXIAL CLASSE 150 PSI

п	DN	Movime	entos Não Sim	nultâneos	Co	nstantes de M	ola	Pressão	Área	Comprimento L / Peso Unitário					
	DIA	Axial	Lateral	Angular	Axial	Lateral	Angular	Máxima	Efetiva	Ponta	Solda	Flar	nges	Van S	Stone
	(pol.)	[mm]	(mm)	(mm)	(kgf/mm)	(kgf/mm)	(Kgf.m / °)	[Kgf/cm²]	(cm ²)	(mm)	(kg)	(mm)	(kg)	(mm)	(kg)
П		12	2	3	38,1	80,6	0,3	27,0	29,0	190	1,1	104	5,0	187	6,3
П	2	18	4	4	28,6	34,0	0,2	27,0	29,0	207	1,2	121	5,1	205	6,3
П		25	5	10	20,8	13,1	0,2	27,0	29,0	240	1,4	147	5,3	230	6,5
П		12	2	3	45,9	141,7	0,6	27,0	43,0	190	1,7	112	7,0	18 <i>7</i>	8,6
2.	.1/2	18	4	4	34,4	59,8	0,4	27,0	43,0	207	1,8	130	7,1	205	8, <i>7</i>
+		25	5	10	25,0	23,0	0,3	27,0	43,0	240	2,1	155	7,3	230	8,9
Г		TΖ	2	3	57,5	262,5	1,0	27,0	64,0	190	2,2	112	7,9	18 <i>7</i>	10,2
П	3	15	4	4	43,1	110,7	0,8	27,0	64,0	207	2,3	130	8,0	205	10,3
L		25	5	9	26,0	25.8	0,5	25,0	64,0	240	2,5	195	8,2	247	10,5
П		12	2	3	65,7	390,2	1,5	27,0	83,0	190	2,6	112	10,8	213	14,1
3.	.1/2	15	4	4	49,3	164,6	1,1	27,0	83,0	207	2,7	130	11,0	230	14,2
П		25	5	9	28,2	30,7	0,7	25,0	83,0	260	3,2	195	11,4	281	14,7
1		15	3	3	62,6	287,5	1,8	24,0	105,0	207	3,3	120	13.0	230	16,8
П	4	20	5	4	46,9	121,3	1,4	24,0	105,0	225	3,6 🤇	185	13,3	251	1 <i>7</i> ,0
1		30	6	9	31,3	35,9	0,9	25,0	105,0	285	4,3	245	13,8	295	1 <i>7</i> ,6

PASSO 8 - Caso nenhuma das juntas tabeladas atenda as solicitações de serviço pretendidas, preencher o formulário no final deste catálogo e enviá-lo a TEADIT Juntas.

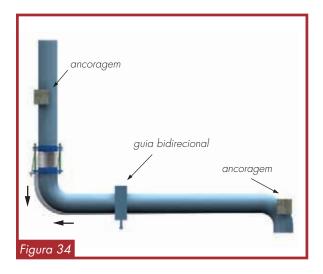

		DE EXPANSÃO	TERMINITO
Clerks		N	
Keherlencie:		Ford .	
Cidade:		Estador	
Nore:			
WS:		_	_
Quantidade: Dimensões (3) ou (4)		_	_
Comprimento (mm):	_	_	+
	Condic	les .	_
Nido			
Pessão (tor)			
Temperatura (PC)			
	Movime	ntes	
Accid (mm)			
Lotered (mm) Acquilar (mm)		_	_
		ea o fee: 19132255614	_
- Indisc	Materiais de		-
Tomorio	Materials of	is zomes	_
Roger	_		_
fdle			
Guia Mena			
Proteção externa			
Troites			
	Conex	ōes .	
Narges (nomo)			
Forto para soldo			
			- 1

8. Tipos de Juntas de Expansão

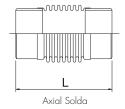

8.1. AXIAL SIMPLES

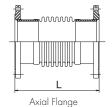
É constituída de apenas um fole, e suas conexões tais como flanges, flanges soltos ou pontas para solda. É usada para absorver basicamente movimentos axiais ao eixo da tubulação de compressão e/ou extensão, conforme mostrado na figura 32.

A junta de expansão deve ser instalada perto de uma das ancoragens e guias devem ser usadas para assegurar o correto alinhamento da tubulação.



A Junta Axial Simples também pode ser usada para absorver movimentos laterais de pequena amplitude (Figura 33). Neste caso, uma das ancoragens deve permitir o movimento lateral, suportando a força de pressão.




8.2. AXIAL COM TIRANTES

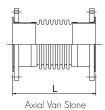

A Junta de Expansão Axial com tirantes é usada para absorver movimentos laterais de pequena amplitude. Sempre que a instalação permitir o uso dos tirantes para eliminar o movimento axial e a força de pressão, as juntas simplificam e reduzem o custo da instalação. No entanto, em virtude de pequena amplitude de movimentos que podem ser absorvidos por este tipo de junta ela é muito pouco utilizada nesta função, sendo substituída pela junta universal.

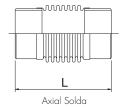
Tabela 4 JUNTA DE EXPANSÃO AXIAL CLASSE **50 PSI**

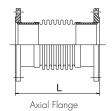
NOTAS EXPLICATIVAS

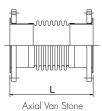
1. Os movimentos tabelados são considerados para movimentos não simultâneos. Caso ocorram movimentos simultaneamente, a seguinte equação de verificação deve ser satisfeita

2. Os movimentos tabelados são considerados para uma vida útil de aproximadamente **2000 ciclos** segundo o método de cálculo do EJMA. Caso seja desejável uma maior vida útil, os movimentos tabelados devem ser multiplicados pelos seguintes fatores de redução:

Vida cíclica desejada (nº de ciclos)	5.000	10.000	25.000	50.000	1.000.000
Fator de redução dos movimentos tabelados	0,801	0,683	0,563	0,493	0,314


- As informações descritas nestas tabelas são para temperaturas de 250°C. Para casos com temperatura entre 250°C e 400°C, multiplicar os valores das Constantes de Mola e da Pressão Máxima pelo fator de correção 0,87.
- 4. Máximo valor do movimento axial de extensão é de 50% do movimento axial tabelado para compressão.
- 5. Teste hidrostático para as juntas foi considerado: pressão teste = 1,5 x pressão projeto
- 6. A pressão máxima indicada, refere-se a menor das pressões que causam instabilidade no fole: <u>instabilidade de coluna</u> ou <u>instabilidade de plano</u> e não deve nunca ser ultrapassada, quer seja em operação ou em teste hidrostático. Este valor de pressão máximo não deve ser utilizado como pressão máxima de projeto.
- 7. A furação e faceamento dos flanges segue o padrão ASME B16.5 em sua classe de pressão correspondente, exceto para juntas Classe 50 psi que seguem o padrão de furação segundo ASME B-16.5 150 psi
- Os terminais para solda são fabricados com bisel de 37,5°, em ASTM-A-106 SCH 40 para tubulações de até DN 10" e em A36 ou equivalente para DNs superiores, nas espessuras de 6,3mm para DNs entre 12" e 24", de 9,5mm para DNs de 26" a 48" e de 12,7mm para DNs de 50" a 72".
- 9. O material de fole considerado nas tabelas é ASTM A-240 TP 304 ou TP 321. Outros materiais, sob consulta.
- 10. Para pressões e/ou diâmetros não atendidos nesta tabela, preencher o formulário que se encontra no final do catálogo e encaminhá-lo para TEADIT JUNTAS.


DN	Movime	entos Não Sin	nultâneos	Co	onstantes de M	ola	Pressão	Área		C	omprimento	L / Peso Uni	Comprimento L / Peso Unitário			
DIN	Axial	Lateral	Angular	Axial	Lateral	Angular	Máxima	Efetiva	Ponta	Solda	Fla	nge	Van	Stone		
(pol.)	(mm)	(mm)	(graus)	(kgf/mm)	(kgf/mm)	(Kgf.m /graus)	(Kgf/cm²)	(cm ²)	(mm)	(kg)	(mm)	(kg)	(mm)	(kg)		
	12	3	23	19,2	39,8	0,2	14,1	29	160	0,8	90	2,6	187	3,8		
2	20	9	39	11,5	8,6	0,1	7,3	29	195	0,9	125	2,7	222	3,9		
	30	20	35	11,2	2,9	0,1	5,4	29,1	255	1	185	2,9	282	4,1		
	12	3	18	23,3	71	0,3	13,9	42,4	160	1,2	90	3,2	18 <i>7</i>	3,3		
2.1/2	20	7	30	14	15,3	0,2	11,5	42,4	195	1,3	125	3,3	222	3,4		
	30	18	40	13,9	5,3	0,2	5,9	42,5	255	1,5	185	3,5	282	3,6		
	11	2	14	28,9	130,2	0,5	13,7	62,9	160	1,6	95	5,1	187	7,4		
3	19	6	24	17,3	28,1	0,3	13,7	62,9	195	1,6	130	5,2	222	7,5		
	27	15	34	17,4	9,8	0,3	7,3	63,1	255	1,9	195	5,5	282	7,8		
	11	2	12	33	193,7	0,8	13,6	82	160	1,8	95	6	213	9,2		
3.1/2	19	5	21	19,8	41,9	0,5	13,6	82	195	2	130	6,1	247	9,4		
	27	12	30	19,9	14,6	0,5	10,2	82,1	255	2,4	195	6,5	307	9,8		
	18	3	18	18,9	85,5	0,5	9	103,4	180	2,2	110	6	230	9,8		
4	30	8	30	11,3	18,5	0,3	70	103,4	221	2,4	155	6,2	273	9,9		
	38	15	22	12,7	9,2	0,4	5,3	103,6	275	2,7	245	6,5	328	10,3		
	18	3	14	23,4	162	1	8,8	1 <i>57</i> ,8	180	3	110	7,3	230	12,9		
5	30	6	24	14,1	35	0,6	8,8	157,8	221	3,2	155	7,5	273	13,1		
	40	18	18	14,1	12,1	0,6	5,4	158	298	3,9	235	8,2	350	13,8		
_	18	2	12	27,9	273,5	1,7	8,7	223,8	180	3,8	110	8,3	255	15,4		
6	30	6	20	16,7	59,1	1	8,7	223,8	221	4,1	155	8,6	299	15,7		
	40	12	25	19	29,9	1,2	9,3	224,1	275	4,7	270	9,2	354	16,4		
•	22	3	11 17	34	380,4	3,6	8,3	378,8	194	5,9	130	12	297 337	24,1		
8	35 50	6	26	22,7	112,7	2,4	8,3	378,8	234	6,3	1 <i>7</i> 0 290	12,4	404	24,6		
	22	15 2	20	14,6 42,8	29,9 743,1	1,5 7	6 8,1	378,8 587,9	300 194	7,1 8,1	135	13,2 18,1	348	25,3 38,3		
10	32	5	13	28,5	220,2	4,7	8,1	587,9	234	8,7	190	18,7	388	38,8		
10	50	12	21	18,3	58,5	3	7,2	587,9	300	9.6	300	19,6	455	39,8		
	22	2	7	51	1.248	11,7	7,2	827,5	245	14	140	28,5	399	57,1		
12	33	4	11	34	369,7	7,8	7,9	827,5	285	14.7	205	29,2	439	57,8		
14	50	10	17	21,9	98,2	5	7,3	827,5	350	15,8	315	30,3	506	58,9		
	21	10	7	56,6	1.660	15,7	7,3	996,2	245	15,6	146	34,9	399	69,2		
14	32	3	10	37,7	493,7	10,4	7,8	996,2	270	16,2	206	35,6	439	69,9		
1-4	50	9	16	24,3	131,2	6,7	7,0 7,1	990,2	350	17,4	320	36,8	506	71,1		
	1 30	7	10	∠4,∪	101,2	I 0,/	7,1	77U,Z	1 330	17,4	1 020	1 30,0	1 300	7 1,1		


Tabela 4 JUNTA DE EXPANSÃO AXIAL CLASSE **50 PSI** (cont.)

		NI~ C·			onstantes de M	ola	Pressão					L / Peso Uni	la • J	
DN	Axial	entos Não Sim Lateral	Angular	Axial	Lateral	Angular	Máxima	Area Efetiva	Ponta	Solda		nge		Stone
(pol.)	(mm)	(mm)	(graus)	(kgf/mm)		(Kgf.m/graus)	(Kgf/cm²)	(cm ²)	(mm)	(kg)	(mm)	(kg)	(mm)	(kg)
	21	1	6	64,8	2.491	23,4	7,4	1.301	245	17,6	150	40,8	399	81,6
16	32 50	3 7	9	43,2 27,8	738,2 196,1	15,6 10	7,4 76,8	1.301	270 350	1 <i>7,7</i> 19,9	185 245	41,6 43,1	439 506	82,5 83,9
	21	1	5	72,4	3.519	33,1	70,0	1.646	245	19,8	160	57,1	399	111,5
18	36	4	9	39,5	571,2	18,1	7	1.646	280	18	250	58,7	466	113,1
	60	7	16	33,8	263,5	15,5	9,1	1.649	350	26	300	63,3	520	117,7
20	30 45	2 4	7 10	80,5 51,2	3.555 916,3	45,5 29	10,1 10,1	2.035 2.035	255 310	24,2 25,3	171 225	61,7 62,8	412 466	121,5 122,7
20	60	8	14	37,6	361,3	21,2	8,8	2.035	365	26,5	270	64	520	123,9
	38	3	7	134	4.070	107,9	7,3	2.899	280	30,7	415	112,6	440	130,6
22	50	5	9	100,5	1.717	80,9	7,3	2.899	330	33,5	460	115,4	485	133,4
	75 38	11	14 7	67 144,3	508,8 5.133	54 136,1	7,3 7,2	2.899 3.395	420 285	39,1 33,5	550 415	121	575 440	139 166,8
24	50	5	9	108,2	2.166	102,1	7,2	3.395	330	36,5	460	138,5	485	169,9
	75	10	13	72,1	641,7	68,1	7,2	3.395	420	42,6	550	144,7	575	176
	38	2	6	155,1	6.445	170,9	<i>7</i> ,1	3.965	285	37,3	415	159,3	440	193,6
26	50	4	8	116,3	2.719	128,1	7,1	3.965	330	39,6	460	162,6	485	197
	75 42	9	12	<i>77</i> ,6 216,9	805,6 7.103	85,4 281,3	7,1 8,4	3.965 4.669	420 285	46,2 41	550 485	169,2 1 <i>77,7</i>	575 470	203,6 214,3
28	58	5	8	162,7	2.997	201,3	8,4	4.669	370	51,9	540	183,5	525	220,1
	85	11	12	108,4	887,9	140,7	8,4	4.669	480	63,5	650	195,2	635	231,7
00	42	3	6	230,7	8.608	340,9	8,3	5.320	285	43,4	485	242	470	274,8
30	60 85	5 11	8 12	1 <i>7</i> 3 115,3	3.632 1.076	255,7 1 <i>7</i> 0,5	8,3 8,3	5.320 5.320	370 480	55 69,5	540 650	248,3 260,8	525 635	281 293,5
	42	3	5	232	9.718	384,9	7,9	5.972	300	48,4	485	291,1	470	340,1
32	60	5	7	174	4.100	288,6	7,9	5.972	370	59,4	540	297,7	525	346,8
	85	10	11	116	1.215	192,4	7,9	5.972	480	72,6	650	311	635	360,1
34	42 60	2 5	5 7	257,4 193	12.054 5.085	477,4 358	8,1 8,1	6.677 6.677	300 3 <i>7</i> 0	51,5 62,9	485 540	309,5 316,9	470 525	362,6 370
34	85	10	10	128,7	1.507	238,7	8,1	6.677	480	77,1	650	330,7	635	383,8
	42	2	5	271,6	14.140	560	8	7.420	300	54,4	485	348	470	404,9
36	60	4	7	203,7	5.965	420	8	7.420	370	66,6	540	355,4	525	412,4
	85	10	10	135,8	1.767	280	8	7.420	480	81,6	650	370,4	635	427,4
38	42 60	2 4	4	286,8 215,1	16.599 7.002	657,4 493	7,9 7,9	8.252 8.252	300 3 <i>7</i> 0	56,1 68,6	485 540	388,9 396,4	470 525	456,4 463,8
	85	9	9	143,4	2.075	328,7	7,9	8.252	480	83,6	650	411,3	635	478,8
	42	2	4	301,3	19.218	<i>7</i> 61,1	7,7	9.093	300	60,5	485	421,7	470	489,4
40	60	4	6	226	8.108	570,8	7,7	9.093	370	74	540	430	525	497,7
	85 42	8 2	9	150,6 315,8	2.402 22.097	380,5 875,1	7,7 7,6	9.093 9.977	480 300	90,7	650 485	446,7 453,1	635 470	514,3 525,1
42	60	4	5	236,8	9.322	656,3	7,6	9.977	370	78	540	461,8	525	534
	85	8	8	157,9	2.762	437,6	7,6	9.977	480	95,2	650	479,3	635	551,3
	42	2	4	330	25.185	997,4	7,5	10.880	310	69,5	485	480,4	470	556,4
44	55	3	5	247,5	10.625	748,1	7,5	10.880	380	84,4	540	489,6	525	565,6
	85 42	7 2	8 4	165 344,1	3.148 28.546	498,7 1.130	7,5 7,3	10.880	490 310	102,6 72,6	650 485	507,9 500,9	635 470	583,8 581,2
46	55	3	4	258,1	12.043	847,9	7,3	11.824	380	88,2	540	510,5	525	590,7
	85	7	6	172,1	3.568	565,3	7,3	11.824	490	107,3	650	529,6	635	609,8
40	42	2	3	358,6	32.268	1.278	7,2	12.828	310	75,8	485	594,1	470	680,4
48	55 85	3 7	4	268,9 1 <i>7</i> 9,3	13.613 4.033	958,4 639	7,2 7,2	12.828 12.828	380 490	92	540 650	604 624	525 635	690,4 710,4
	42	1	3	373,6	36.463	1.444	7,2	13.914	310	78,9	485	645,4	470	738
50	55	3	4	280,2	15.383	1.083	7	13.914	380	95,8	540	656,3	525	749
	85	7	6	186,8	4.558	722	7	13.914	490	116,6	650	677,1	635	769,2
52	55 65	2 3	4	332,9 249,7	35.031 14.779	1.387 1.040	8,9 8,9	15.000 15.000	310 380	99,2 122,3	485 540	702,9 719,2	470 525	801,7 817,9
	90	8	8	166,5	4.379	693,7	8,9	15.000	490	154,7	650	751,6	635	850,4
	55	2	4	345,1	39.049	1.546	8,8	16.128	330	110,2	485	746,1	470	851,1
54	65	3	6	258,9	16.474	1.160	8,8	16.128	400	134,1	540	762,9	525	867,9
	90 55	8 2	8 4	1 <i>7</i> 2,6 381,3	4.881 52.712	773,2 2.087	8,8 8,4	16.128 19.706	510 330	167,8 122,4	650 485	796,6 953,2	635 470	901,6
60	65	3	5	286	22.238	1.566	8,4	19.706	400	149	540	971,9	525	1.074
	90	7	8	190,7	6.589	1.044	8,4	19.706	510	186,4	650	1.009	635	1.130
	55	2	3	415,7	68.390	2.708	8,1	23.452	360	147,6	485	1.199	470	1.343
66	65	3	5	311,8	28.852	2.031	8,1	23.452	420	172,5	540	1.219	525	1.363
	90 55	7 1	7 3	207,9 453,8	8.549 89.130	1.354 3.530	8,1 7,7	23.452 27.996	530 370	213,7 165,7	650 485	1.261	635 470	1.405
72	65	2	4	340,4	37.602	2.647	7,7	27.996	420	188,2	540	1.361	525	1.525
	90	6	6	226,9	11.141	1.765	7,7	27.996	530	233,2	650	1.406	635	1.569
		·	1	1	1	ı	1			· · · · ·		1	1	

Tabela 5 JUNTA DE EXPANSÃO AXIAL CLASSE 150 PSI

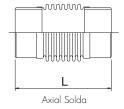
NOTAS EXPLICATIVAS

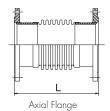
1. Os movimentos tabelados são considerados para movimentos não simultâneos. Caso ocorram movimentos simultaneamente, a seguinte equação de verificação deve ser satisfeita

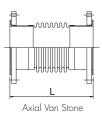
movimento axial delado + movimento lateral tabelado + movimento lateral tabelado + movimento angular tabelado ≤ 1,0

2. Os movimentos tabelados s\u00e3o considerados para uma vida \u00e9til de aproximadamente 2000 ciclos segundo o m\u00e9todo de c\u00e1culo do EJMA. Caso seja desej\u00e1vel uma maior vida \u00e9til, os movimentos tabelados devem ser multiplicados pelos seguintes fatores de redu\u00e7\u00e3o:

Vida cíclica desejada (nº de ciclos)	5.000	10.000	25.000	50.000	1.000.000
Fator de redução dos movimentos tabelados	0,801	0,683	0,563	0,493	0,314


- As informações descritas nestas tabelas são para temperaturas de 250°C. Para casos com temperatura entre 250°C e 400°C, multiplicar os valores das Constantes de Mola e da Pressão Máxima pelo fator de correção 0,87.
- 4. Máximo valor do movimento axial de extensão é de 50% do movimento axial tabelado para compressão.
- 5. Teste hidrostático para as juntas foi considerado: pressão teste = 1,5 x pressão projeto
- 6. A pressão máxima indicada, refere-se a menor das pressões que causam instabilidade no fole: <u>instabilidade de coluna</u> ou <u>instabilidade de plano</u> e não deve nunca ser ultrapassada, quer seja em operação ou em teste hidrostático. Este valor de pressão máximo não deve ser utilizado como pressão máxima de projeto.
- A furação e faceamento dos flanges segue o padrão ASME B16.5 em sua classe de pressão correspondente, exceto para juntas Classe 50 psi que seguem o padrão de furação segundo ASME B-16.5 150 psi
- 8. Os terminais para solda são fabricados com bisel de 37,5°, em ASTM-A-106 SCH 40 para tubulações de até DN 10" e em A36 ou equivalente para DNs superiores, nas espessuras de 9,5mm para DNs entre 12" e 20", de 12,7mm para DNs de 24" e superiores.
- 9. O material de fole considerado nas tabelas é ASTM A-240 TP 304 ou TP 321. Outros materiais, sob consulta.
- 10. Para pressões e/ou diâmetros não atendidos nesta tabela, preencher o formulário que se encontra no final do catálogo e encaminhá-lo para TEADIT JUNTAS.


DN	Movime	entos Não Sim	nultâneos	Co	nstantes de M	ıola	Pressão	Área		Ca	omprimento l	. / Peso Unit	ário	
DIN	Axial	Lateral	Angular	Axial	Lateral	Angular	Máxima	Efetiva	Ponta	Solda	Flai	nge	Van	Stone
(pol.)	(mm)	(mm)	(graus)	(kgf/mm)	(kgf/mm)	(Kgf.m/graus)	(Kgf/cm²)	(cm ²)	(mm)	(kg)	(mm)	(kg)	(mm)	(kg)
	12	2	23	38,1	80,6	0,3	27,9	29	190	1,1	104	5	187	6,3
2	18	4	30	28,6	34	0,2	27,9	29	207	1,2	121	5,1	205	6,3
	25	5	20	20,8	13,1	0,2	16	29	240	1,4	147	5,3	230	6,5
	12	2	18	45,9	141,7	0,6	27,2	43	190	1,7	112	7	187	8,6
2.1/2	18	4	25	34,4	59,8	0,4	27,2	43	207	1,8	130	7,1	205	8,7
	25	5	28	25	23	0,3	15,9	43	240	2,1	155	7,3	230	8,9
	12	2	14	57,5	262,5	1	27,3	64	190	2,2	112	7,9	187	10,2
3	15	4	19	43,1	110,7	0,8	27,3	64	207	2,3	130	8	205	10,3
	25	5	27	26,6	25,8	0,5	15,9	64	240	2,5	195	8,2	247	10,5
	12	2	12	65,7	390,2	1,5	27,1	83	190	2,6	112	10,8	213	14,1
3.1/2	15	4	17	49,3	164,6	1,1	27,1	83	207	2,7	130	11	230	14,2
	25	5	29	28,2	30,7	0,7	17,2	83	260	3,2	195	11,4	281	14,7
	15	3	15	62,6	287,5	1,8	24,6	105	207	3,3	130	13	230	16,8
4	20 30	5	20 30	46,9	121,3 35,9	1,4 0,9	24,6	105 105	225 285	3,6	185 245	13,3	251 295	17
	15	2	12	31,3 77,9	545,1	3,5	16,3 24,4	160	207	4,3 4,3	130	13,8 15,1	293	17,6 20,7
5	20	4	16	58,4	230	2,6	24,4	160	207	4,5	180	15,1	250	20,7
3	30	6	24	39	68,1	1,7	23,6	160	275	5,3	235	15,4	295	21,6
	15	2	10	95	940	6	24,4	226	207	5,1	136	19	255	26,1
6	20	4	13	71,3	396,6	4,5	24,4	226	230	5,4	190	19,3	277	26,5
	30	6	21	43,9	92,4	2,8	23,3	226	345	8,1	270	20,5	332	27,7
	25	2	11	101,7	1.150	10,8	24,7	382,9	235	8,3	160	30,9	297	43
8	38	4	17	67,8	340,8	7,2	24,7	382,9	275	9,7	210	32,2	337	44,4
	50	10	27	43,6	90,5	4,6	17,8	383	350	12,4	290	34,6	404	46,7
	25	2	9	129,1	2.262	21,3	24,4	592,9	230	11,9	190	42,4	348	62,6
10	30	4	13	86,1	670,1	14,2	24,4	592,9	275	12,1	245	42,6	388	62,8
	50	10	21	55,3	178	9,1	21,6	592,9	370	16,3	300	45,1	455	65,2
	25	2	7	152,8	3.763	35,4	23,6	833,7	230	13,2	170	60,9	399	89,4
12	35	4	11	101,9	1.115	23,6	23,6	833,7	275	15,2	205	62,9	439	91,5
	50	10	17	64,9	293,9	15,1	21,8	833	370	20,5	315	65,9	506	94,5
	22	1	7	168,1	4.982	46,9	23,1	1.003	230	17,8	180	88,4	399	122,7
14	30	3	10	112,1	1.476	31,2	23,1	1.003	275	20	206	90,6	439	124,9
	50	9	16	72	392,2	20,1	21,3	1.003	370	26,5	320	94,7	506	129


Tabela 5 JUNTA DE EXPANSÃO AXIAL CLASSE 150 PSI (cont.)

DN	Movime	entos Não Sir	nultâneos	Co	onstantes de M	lola	Pressão	Área		Co	omprimento l	/ Peso Unit	tário	
DIN	Axial	Lateral	Angular	Axial	Lateral	Angular	Máxima	Efetiva	Ponta	Solda	Fla	nge	Van	Stone
(pol.)	(mm)	(mm)	(graus)	(kgf/mm)	(kgf/mm)	(Kgf.m /graus)	(Kgf/cm²)	(cm ²)	(mm)	(kg)	(mm)	(kg)	(mm)	(kg)
	22	1	6	192,6	7.446	70	22	1.309	205	1 <i>7</i> ,1	185	95,9	399	136,7
16	30	3	9	128,4	2.206	46,7	22	1.309	295	24,9	245	99	439	139,8
	50	8	14	83,2	590,9	30,3	20,4	1.309	370	30,2	288	103,4	506	144,2
	22	1	5	218,6	10.686	100,5	20,9	1.654	205	19,3	180	125,7	399	180,2
18	30	3	8	145,8	3.166	67	20,9	1.654	295	20,1	250	126	439	180,4
	50	7	12	92,2	827,6	42,4	19,3	1.654	370	34	300	134,1	506	188,6
	22	1	4	241	14.533	136,7	19,7	2.041	215	22,7	205	158,7	399	218,7
20	30	2	7	160,7	4.306	91,1	19,7	2.041	305	32,6	220	162,7	439	222,7
	50	6	11	102,4	1.135	58,1	18,1	2.041	370	37,8	290	167,9	506	227,9
	30	1	5	604,4	18.511	490,7	23,8	2.922	295	47,6	415	197,8	440	267,8
22	40	3	7	453,3	7.809	368,1	23,8	2.922	340	54,7	460	208,9	485	278,9
	60	6	10	302,2	2.314	245,4	23,8	2.922	430	69,7	550	224,6	575	294,6
	30	1	4	656,6	23.540	624,1	23,4	3.421	295	51,5	415	228,5	440	305,6
24	40	3	6	492,4	9.931	468,1	23,4	3.421	340	59,7	460	236,7	485	313,8
	60	6	9	328,3	2.942	312	23,4	3.421	430	76	550	253,1	575	330,2

Tabela 6 JUNTA DE EXPANSÃO AXIAL CLASSE 300 PSI

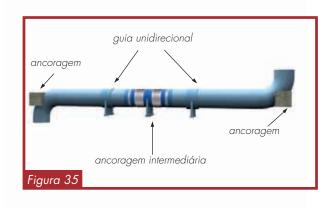
NOTAS EXPLICATIVAS

1. Os movimentos tabelados são considerados para movimentos não simultâneos. Caso ocorram movimentos simultaneamente, a seguinte equação de verificação deve ser satisfeita

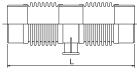
movimento axial delado + movimento lateral tabelado + movimento lateral tabelado + movimento angular tabelado ≤ 1,0

2. Os movimentos tabelados são considerados para uma vida útil de aproximadamente 2000 ciclos segundo o método de cálculo do EJMA. Caso seja desejável uma maior vida útil, os movimentos tabelados devem ser multiplicados pelos seguintes fatores de redução:

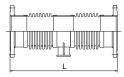
Vida cíclica desejada (nº de ciclos)	5.000	10.000	25.000	50.000	1.000.000
Fator de redução dos movimentos tabelados	0,801	0,683	0,563	0,493	0,314

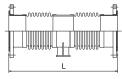

- As informações descritas nestas tabelas são para temperaturas de 250°C. Para casos com temperatura entre 250°C e 400°C, multiplicar os valores das Constantes de Mola e da Pressão Máxima pelo fator de correção 0,87.
- 4. Máximo valor do movimento axial de extensão é de 50% do movimento axial tabelado para compressão.
- 5. Teste hidrostático para as juntas foi considerado: pressão teste = 1,5 x pressão projeto
- 6. A pressão máxima indicada, refere-se a menor das pressões que causam instabilidade no fole: <u>instabilidade de coluna</u> ou <u>instabilidade de plano</u> e não deve nunca ser ultrapassada, quer seja em operação ou em teste hidrostático. Este valor de pressão máximo não deve ser utilizado como pressão máxima de projeto.
- A furação e faceamento dos flanges segue o padrão ASME B16.5 em sua classe de pressão correspondente, exceto para juntas Classe 50 psi que seguem o padrão de furação segundo ASME B-16.5 150 psi
- 8. Os terminais para solda são fabricados com bisel de 37,5°, em ASTM-A-106 SCH 40 para tubulações de até DN 10" e em A36 ou equivalente para DNs superiores, nas espessuras de 12,7mm para DNs entre 12" e 14".
- 9. O material de fole considerado nas tabelas é ASTM A-240 TP 304 ou TP 321. Outros materiais, sob consulta.
- 10. Para pressões e/ou diâmetros não atendidos nesta tabela, preencher o formulário que se encontra no final do catálogo e encaminhá-lo para TEADIT JUNTAS.

DN	Movime	entos Não Sim	nultâneos	Ca	onstantes de M	ıola	Pressão	Área		C	omprimento	L / Peso Uni	tário	
DIN	Axial	Lateral	Angular	Axial	Lateral	Angular	Máxima	Efetiva	Ponta	Solda	Flo	ınge	Van	Stone
(pol.)	(mm)	(mm)	(graus)	(kgf/mm)	(kgf/mm)	(Kgf.m/graus)	(Kgf/cm²)	(cm ²)	(mm)	(kg)	(mm)	(kg)	(mm)	(kg)
	10	3	18	63,8	135,8	0,5	38,6	29,7	190	1,6	112	7,4	190	8,6
2	13	5	24	47,9	57,3	0,4	38,6	29,7	207	1,7	130	7,5	205	8,7
	15	6	27	42,6	40,2	0,4	38,6	29,7	230	1,8	140	7,6	215	8,8
	10	2	14	78,1	242,3	0,9	38,2	43,2	190	2,3	115	10,4	190	12
2.1/2	13	4	19	58,6	102,2	0,7	38,2	43,2	207	2,4	135	10,5	205	12,1
	15	5	22	52,1	71,8	0,6	38,2	43,2	230	2,6	145	10,6	215	12,2
	10	2	11	98	449	1,7	38,4	63,9	210	3,3	120	13,5	190	15,8
3	13	3	15	73,5	189,4	1,3	38,4	63,9	230	3,5	140	13,7	205	16
	15	4	17	65,3	133	1,2	38,4	63,9	285	4,5	150	13,8	215	16
0.7/0	10	1	10	113,6	676,5	2,6	38,4	83	210	4	125	17,6	215	20,8
3.1/2	13 15	3	13 15	85,2	285,4	2	38,4	83	230	4,2	145	17,8	230	21
	15	3	15	75,8 93,6	200,4 434,4	1,8 2,8	38,4 36,7	83 105,9	285 230	5,4 5,3	150 145	17,8 23,3	240 230	21,1 27,1
4	20	5	20	70,2	183,3	2,0	36,7	105,9	245	5,5 5,6	170	23,3	255	27,1
~	25	7	22	62,4	128,7	1,8	36,7	105,9	260	5,9	210	23,7	265	27,7
	15	2	12	117,8	830,7	5,3	36,7	160,8	230	6,6	150	29,6	230	35,2
5	20	4	16	88,4	350,5	4	36,7	160,8	255	7	170	30,1	255	35,7
•	25	5	18	78,5	246,1	3,5	36,7	160,8	310	8,9	230	30,3	265	35,9
	15	2	10	142,3	1.417	9	36,4	227,3	230	9,5	150	40,9	255	48
6	20	3	13	106,7	598	6,7	36,4	227,3	255	10,3	180	41,5	280	48,6
	25	4	14	94,8	420	6	36,4	227,3	310	12,8	235	41,7	290	48,9
	27	3	12	183,9	1.164	24,4	35,3	477,2	260	17,5	305	88,1	325	76,9
8	35	8	16	138	491	18,3	35,3	477,2	320	21,2	340	90,2	365	<i>7</i> 9,1
	45	7	20	110,4	251	14,6	35,3	477,2	360	23,3	380	92,4	405	81,3
	27	4	10	220,4	2.063	43,2	34,1	705,7	260	24,3	350	111,5	375	109,5
10	35	6	13	165,3	870,4	32,4	34,1	705,7	335	30,3	395	114,1	415	112,2
	45	10	17	132,3	445,6	25,9	34,1	705,7	425	38,6	430	116,8	455	114,9
	27	3	8	268,4	3.435	72	34,1	964,9	255	29,5	360	156,8	425	153,7
12	35	5	11	201,3	1.449	54	34,1	964,9	335	36	400	160	465	156,9
	45	8	14	161,1	741,9	43,2	34,1	964,9	425	46,3	440	163,2	505	160,1
	27	6	8	287,6	3.622	91,8	33,5	1.149	255	33,3	375	213,8	440	210,1
14	35	6	10	215,7	1.528	68,9	33,5	1.149	335	44,2	420	217,3	485	213,6
	45	9	13	172,6	782,4	55,1	33,5	1.149	425	55	460	220,8	530	217,1


8.3. AXIAL DUPLA

Quando a amplitude do movimento axial a ser absorvido excede o máximo admissível para uma Junta Axial Simples, usa-se a Junta Axial Dupla, com ancoragem intermediária.

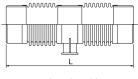

Cada fole absorve a expansão da tubulação do lado onde está instalado, funcionando como uma junta axial simples.

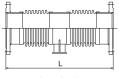

Tabela 7 JUNTA DE EXPANSÃO AXIAL DUPLA CLASSE **50 PSI**

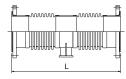
Axial Dupla Flange

Axial Dupla Van Stone

NOTAS EXPLICATIVAS


1. Os movimentos tabelados são considerados para uma vida útil de aproximadamente **2000 ciclos** segundo o método de cálculo do EJMA. Caso seja desejável uma maior vida útil, os movimentos tabelados devem ser multiplicados pelos seguintes fatores de redução:


Vida cíclica desejada (n° de ciclos)	5.000	10.000	25.000	50.000	1.000.000
Fator de redução dos movimentos tabelados	0,801	0,683	0,563	0,493	0,314


- As informações descritas nestas tabelas são para temperaturas de 250°C. Para casos com temperatura entre 250°C e 400°C, multiplicar os valores das Constantes de Mola e da Pressão Máxima pelo fator de correção 0,87.
- 3. Máximo valor do movimento axial de extensão é de 50% do movimento axial tabelado para compressão.
- 4. Teste hidrostático para as juntas foi considerado: pressão teste = 1,5 x pressão projeto
- 5. A pressão máxima indicada, refere-se a menor das pressões que causam instabilidade no fole: <u>instabilidade de coluna</u> ou <u>instabilidade de plano</u> e não deve nunca ser ultrapassada, quer seja em operação ou em teste hidrostático. Este valor de pressão máximo não deve ser utilizado como pressão máxima de projeto.
- A furação e faceamento dos flanges segue o padrão ASME B16.5 em sua classe de pressão correspondente, exceto para juntas Classe 50 psi que seguem o padrão de furação segundo ASME B-16.5 150 psi
- 7. Os terminais para solda são fabricados com bisel de 37,5°, em ASTM-A-106 SCH 40 para tubulações de até DN 10" e em A36 ou equivalente para DNs superiores, nas espessuras de 6,3mm para DNs entre 12" e 24", de 9,5mm para DNs de 26" a 48" e de 12,7mm para DNs de 50" a 72".
- 8. O material de fole considerado nas tabelas é ASTM A-240 TP 304 ou TP 321. Outros materiais, sob consulta.
- 9. Para pressões e/ou diâmetros não atendidos nesta tabela, preencher o formulário que se encontra no final do catálogo e encaminhá-lo para TEADIT JUNTAS.

DN	Movimentos	Constantes de Mola	Pressão	Área	Comprimento L / Peso Unitário							
DIN	Axial	Axial	Máxima	Efetiva	Ponta	Solda	Flo	ange	Van S	Stone		
(pol.)	(mm)	(kgf/mm)	(Kgf/cm²)	(cm ²)	(mm)	(kg)	(mm)	(kg)	(mm)	(kg)		
2	60	5.6	8	29.1	600	4.8	525	6.7	630	7.9		
2.1/2	60	6.9	9.9	42.5	600	6	525	8	630	9.6		
3	54	8.7	12.4	63.1	600	7	525	10.9	630	13.1		
3.1/2	54	9.9	14.8	82.1	600	8.2	525	12.9	655	16.1		
4	76	6.3	8.1	103.6	640	10.1	560	14.4	690	18.1		
5	80	7	7.9	158	690	13.3	610	18.9	740	24.4		
6	80	9.5	11.8	224.1	640	15.4	560	21.2	720	28.3		
8	100	7.3	8.3	378.8	690	22.5	625	29.1	<i>7</i> 95	41.2		
10	100	9.2	8.1	587.9	690	29.2	625	40	850	60.1		
12	100	10.9	7.9	827.5	740	39.2	635	51	900	79.6		
14	100	12.1	7.8	996.2	890	72.3	790	96.6	1050	130.9		
16	100	12.9	7.4	1,301	890	79.8	790	101	1050	141.8		
18	120	16.9	10.2	1,649	920	101.9	820	171.6	1075	226		
20	120	18.8	9.7	2,035	920	105	820	180	1075	239.9		
22	150	33.5	7.3	2,899	1030	156.6	1160	195.1	1185	255.1		
24	150	36.1	7.2	3,395	1030	170.1	1160	229.2	1185	296.3		

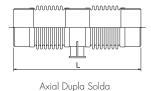
Tabela 8 JUNTA DE EXPANSÃO AXIAL DUPLA CLASSE 150 PSI

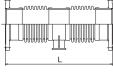
Axial Dupla Solda

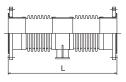
Axial Dupla Flange

Axial Dupla Van Stone

NOTAS EXPLICATIVAS


1. Os movimentos tabelados são considerados para uma vida útil de aproximadamente **2000 ciclos** segundo o método de cálculo do EJMA. Caso seja desejável uma maior vida útil, os movimentos tabelados devem ser multiplicados pelos seguintes fatores de redução:


Vida cíclica desejada (n° de ciclos)	5.000	10.000	25.000	50.000	1.000.000
Fator de redução dos movimentos tabelados	0,801	0,683	0,563	0,493	0,314


- As informações descritas nestas tabelas são para temperaturas de 250°C. Para casos com temperatura entre 250°C e 400°C, multiplicar os valores das Constantes de Mola e da Pressão Máxima pelo fator de correção 0,87.
- 3. Máximo valor do movimento axial de extensão é de 50% do movimento axial tabelado para compressão.
- 4. Teste hidrostático para as juntas foi considerado: pressão teste = 1,5 x pressão projeto
- 5. A pressão máxima indicada, refere-se a menor das pressões que causam instabilidade no fole: <u>instabilidade de coluna</u> ou <u>instabilidade de plano</u> e não deve nunca ser ultrapassada, quer seja em operação ou em teste hidrostático. Este valor de pressão máximo não deve ser utilizado como pressão máxima de projeto.
- A função e faceamento dos flanges segue o padrão ASME B16.5 em sua classe de pressão correspondente, exceto para juntas Classe 50 psi que seguem o padrão de furação segundo ASME B-16.5 150 psi
- 7. Os terminais para solda são fabricados com bisel de 37,5°, em ASTM-A-106 SCH 40 para tubulações de até DN 10" e em A36 ou equivalente para DNs superiores, nas espessuras de 9,5mm para DNs entre 12" e 20", de 12,7mm para DNs de 24" e superiores.
- 8. O material de fole considerado nas tabelas é ASTM A-240 TP 304 ou TP 321. Outros materiais, sob consulta.
- 9. Para pressões e/ou diâmetros não atendidos nesta tabela, preencher o formulário que se encontra no final do catálogo e encaminhá-lo para TEADIT JUNTAS.

DN	Movimentos	Constantes de Mola	Pressão	Área			Comprimento L	. / Peso Unitário		
DIN	Axial	Axial	Máxima	Efetiva	Ponta	Solda	Flo	ange	Van S	Stone
(pol.)	(mm)	(kgf/mm)	(Kgf/cm²)	(cm ²)	(mm)	(kg)	(mm)	(kg)	(mm)	(kg)
2	50	10.4	23	29	536	6.1	435	9.1	525	10.6
2.1/2	50	12.5	27.2	43	536	7.5	445	11.4	525	13.5
3	50	13.3	25.5	64	550	8.6	480	12.9	560	15.1
3.1/2	50	14.1	25.5	83	578	10	495	16.4	600	19. <i>7</i>
4	60	16.7	24.7	105	615	13.8	525	21.1	630	24.9
5	60	19.5	24.4	160	605	16.2	525	24.7	630	30.5
6	60	21.9	24.4	226	690	21.8	550	29.1	680	36.6
8	100	21.8	24.7	383	740	31.2	650	48.5	800	60.6
10	100	27.7	24.5	593	<i>7</i> 60	37.3	655	70.1	850	90.3
12	100	32.5	23.5	833	760	56.6	660	89.6	900	118.1
14	100	36	23.1	1,003	915	78.7	815	123.5	1050	1 <i>57</i> .8
16	100	41.6	22.1	1,308	915	99.8	815	147.6	1050	188.4
18	100	46.1	20.7	1,654	915	115.4	825	189. <i>7</i>	1050	244.1
20	100	51.2	19.3	2,042	915	139.5	815	247.6	1050	307.4
22	120	151.1	23.8	2,922	1040	239.4	1160	379.2	1185	431.2
24	120	164.5	23.4	3,421	1040	259.1	1160	394.6	1185	471.7

Tabela 9 JUNTA DE EXPANSÃO AXIAL DUPLA CLASSE 300 PSI

Axial Dupla Flange

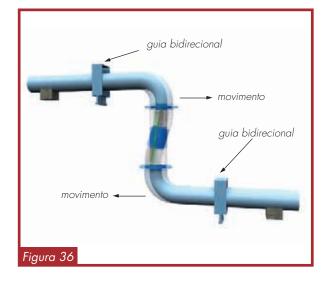
Axial Dupla Van Stone

NOTAS EXPLICATIVAS

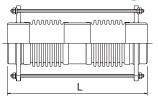
1. Os movimentos tabelados são considerados para uma vida útil de aproximadamente **2000 ciclos** segundo o método de cálculo do EJMA. Caso seja desejável uma maior vida útil, os movimentos tabelados devem ser multiplicados pelos seguintes fatores de redução:

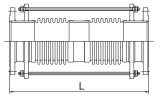
Vida cíclica desejada (n° de ciclos)	5.000	10.000	25.000	50.000	1.000.000	
Fator de redução dos movimentos tabelados	0,801	0,683	0,563	0,493	0,314	

- As informações descritas nestas tabelas são para temperaturas de 250°C. Para casos com temperatura entre 250°C e 400°C, multiplicar os valores das Constantes de Mola e da Pressão Máxima pelo fator de correção 0,87.
- 3. Máximo valor do movimento axial de extensão é de 50% do movimento axial tabelado para compressão.
- 4. Teste hidrostático para as juntas foi considerado: pressão teste = 1,5 x pressão projeto
- 5. A pressão máxima indicada, refere-se a menor das pressões que causam instabilidade no fole: <u>instabilidade de coluna</u> ou <u>instabilidade de plano</u> e não deve nunca ser ultrapassada, quer seja em operação ou em teste hidrostático. Este valor de pressão máximo não deve ser utilizado como pressão máxima de projeto.
- A furção e faceamento dos flanges segue o padrão ASME B16.5 em sua classe de pressão correspondente, exceto para juntas Classe 50 psi que seguem o padrão de furação segundo ASME B-16.5 150 psi
- 7. Os terminais para solda são fabricados com bisel de 37,5°, em ASTM-A-106 SCH 40 para tubulações de até DN 10" e em A36 ou equivalente para DNs superiores, nas espessuras de 12,7mm para DNs entre 12" e 14".
- 8. O material de fole considerado nas tabelas é ASTM A-240 TP 304 ou TP 321. Outros materiais, sob consulta.
- 9. Para pressões e/ou diâmetros não atendidos nesta tabela, preencher o formulário que se encontra no final do catálogo e encaminhá-lo para TEADIT JUNTAS.


DN	Movimentos	Constantes de Mola	Pressão	Área	Comprimento L / Peso Unitário								
DIN	Axial	Axial	Máxima	Efetiva	Ponta	Solda	Flo	ange	Van S	Stone			
(pol.)	(mm)	(kgf/mm)	(Kgf/cm²)	(cm ²)	(mm)	(kg)	(mm)	(kg)	(mm)	(kg)			
2	30	21.3	38,6	29.7	502	6.8	410	12	490	13.9			
2.1/2	30	26.1	38,2	43.2	502	8.5	415	15.4	490	17.5			
3	30	32.7	38,4	63.9	565	12	425	18.8	490	21.9			
3.1/2	30	37.9	38,4	83	565	13.8	430	23.4	515	26.6			
4	50	31.2	36,7	105.9	560	17	480	33	565	36.9			
5	50	39.3	36,7	160.8	610	22.8	485	40.2	565	45.8			
6	50	47.4	36,4	227.3	610	30.6	490	53.1	590	60.2			
8	90	55.2	35,3	477.2	750	53.4	770	138.9	<i>7</i> 95	151			
10	90	66.1	34,1	705.7	810	83.9	820	167	845	187.1			
12	90	80.5	34,1	964.9	815	100.4	830	229.6	895	258.5			
14	90	86.3	33,5	1,149.1	940	142.1	980	324.1	1045	358. <i>7</i>			

8.4. UNIVERSAL


Usada para absorver movimentos laterais de maior amplitude, é constituída de dois foles unidos por um tubo intermediário.


8.5. UNIVERSAL COM TIRANTES

Quando as ancoragens não forem suficientes para suportar a força de pressão, a Junta Universal é construída com tirantes, conforme mostrado na Figura 36.

Tabela 10 JUNTA DE EXPANSÃO UNIVERSAL CLASSE **50 PSI**

Universal Solda

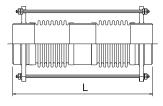
Universal Flange

NOTAS EXPLICATIVAS

1. Os movimentos tabelados são considerados para movimentos não simultâneos. Caso ocorram movimentos simultaneamente, a seguinte equação de verificação deve ser satisfeita

2. Os movimentos tabelados são considerados para uma vida útil de aproximadamente **2000 ciclos** segundo o método de cálculo do EJMA. Caso seja desejável uma maior vida útil, os movimentos tabelados devem ser multiplicados pelos seguintes fatores de redução:

Vida cíclica desejada (n° de ciclos)	5.000	10.000	25.000	50.000	1.000.000
Fator de redução dos movimentos tabelados	0,801	0,683	0,563	0,493	0,314


- 3. As informações descritas nestas tabelas são para temperaturas de 250°C. Para casos com temperatura entre 250°C e 400°C, multiplicar os valores das Constantes de Mola e da Pressão Máxima pelo fator de correção 0,87.
- 4. Máximo valor do movimento axial de extensão é de 50% do movimento axial tabelado para compressão.
- 5. Teste hidrostático para as juntas foi considerado: pressão teste = 1,5 x pressão projeto
- 6. A pressão máxima indicada, refere-se a menor das pressões que causam instabilidade no fole: <u>instabilidade de coluna</u> ou <u>instabilidade de plano</u> e não deve nunca ser ultrapassada, quer seja em operação ou em teste hidrostático. Este valor de pressão máximo não deve ser utilizado como pressão máxima de projeto.
- A furção e faceamento dos flanges segue o padrão ASME B16.5 em sua classe de pressão correspondente, exceto para juntas Classe 50 psi que seguem o padrão de furação segundo ASME B-16.5 150 psi
- Os terminais para solda são fabricados com bisel de 37,5°, em ASTM-A-106 SCH 40 para tubulações de até DN 10" e em A36 ou equivalente para DNs superiores, nas espessuras de 6,3mm para DNs entre 12" e 24", de 9,5mm para DNs de 26" a 48" e de 12,7mm para DNs de 50" a 72".
- 9. O material de fole considerado nas tabelas é ASTM A-240 TP 304 ou TP 321. Outros materiais, sob consulta.
- 10. Para pressões e/ou diâmetros não atendidos nesta tabela, preencher o formulário que se encontra no final do catálogo e encaminhá-lo para TEADIT JUNTAS.

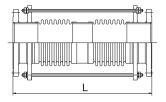

Movimentos não Concorrente		não Concorrentes	Constante	es de Mola	Pressão	Área	Comprimento L			
DN	Axial	Lateral	Axial	Lateral	Máxima	Efetiva	Ponta S	Solda	Flo	inge
(pol)	(mm)	(mm)	(kgf/mm)	(kgf/mm)	(psi)	(cm ²)	(mm)	(kg)	(mm)	(kg)
	24	50	9,6	0,1	9,7	29	610	14,1	630	16,5
2	24	100	9,6	0	9,7	29	<i>7</i> 60	16,2	780	18,4
	24	150	9,6	0	9,7	29	950	17,9	970	20,1
	24	50	11,7	0,1	11,8	42,4	610	16,9	630	19,6
2,1/2	24	100	11,7	0,1	11,8	42,4	760	19	780	21,7
	24	150	11,7	0	11,8	42,4	950	21	970	23,7
	22	50	14,4	0,2	13,7	62,9	610	22,6	630	27
3	22	100	14,4	0,1	13, <i>7</i>	62,9	780	25,4	800	29,8
	22	150	14,4	0	13, <i>7</i>	62,9	980	29,8	1000	34
	22	50	16,5	0,3	13,6	82	620	27,7	640	33
3,1/2	22	100	16,5	0,1	13,6	82	850	33,7	870	38,1
	22	150	16,5	0	13,6	82	1070	37,3	1090	41,7
_	36	50	9,4	0,2	7,5	103,4	645	34,9	665	39,6
4	36	100	9,4	0,1	7,5	103,4	800	38,9	820	43,2
	36	150	9,4	0,1	7,5	103,4	950	41,4	970	46,4
_	36	50	11,7	0,4	8,8	157,8	645	42,8	665	48,7
5	36	100	11,7	0,2	8,8	157,8	810	48,6	830	54,9
	36	150 50	11,7	0,1	8,8	1 <i>57</i> ,8 223,8	1010	55,6	1030	61,8
6	36 36	100	13,9 13,9	0,6 0,2	8,7	223,8	710 950	56 65,1	730 970	62,2
0	36	150	13,9	0,2	8,7 8,7	223,8	1200	75,7	1220	72,6 81,2
	44	100	13,9	0,1	8,3	378,8	1040	93,9	1070	103,8
8	76	200	20,4	0,3	8	380,8	1220	119,9	1250	129,8
•	76	300	20,4	0,3	8	380,8	1520	138,1	1550	148,7
	44	100	21,4	0,4	8,1	587,9	1180	134,3	1210	149,1
10	74	200	25,6	0,3	10,4	590,5	1380	173	1410	187,9
. •	74	300	25,6	0,2	10,4	590,5	1760	212,1	1790	227,9
	44	100	25,5	0,5	7,9	827,5	1400	180	1430	204,8
12	72	200	30,6	0,4	11,8	830,6	1630	248,5	1660	272,1
	72	300	30,6	0,2	11,8	830,6	2080	302	2110	326,2
	42	100	28,3	0,5	<i>7</i> ,8	996,2	1490	264,7	1520	294,5
14	72	200	33,9	0,5	12	999,6	1730	328,1	1760	358,6
	72	300	33,9	0,2	12	999,6	2220	404,1	2250	434,8

Tabela 10 JUNTA DE EXPANSÃO UNIVERSAL CLASSE 50 PSI (cont.)

J		DE EXF			IVERS	AL CLA	155E 5	UPS) (con	it.)
DNI	Movimentos	não Concorrentes	Constante	es de Mola	Pressão	Área		Comp	rimento L	
DN	Axial	Lateral	Axial	Lateral	Máxima	Efetiva	Ponta S	Solda	Flo	nges
(pol)	(mm)	(mm)	(kgf/mm)	(kgf/mm)	(psi)	(cm ²)	(mm)	(kg)	(mm)	(kg)
	42	100	32,4	0,6	7,4	1.301	1670	342,2	1700	376,7
16	72	200	38,9	0,5	11,9	1.304	1940	450,1	1970	484,9
	72	300	38,9	0,2	11,9	1.304	2510	540,1	2540	575
	42	100	36,2	0,7	7	1.646	1790	504	1820	538,6
18	72	200	43,4	0,6	11,5	1.650	2080	600,5	2110	634,3
	72	300	43,4	0,3	11,5	1.650	2720	655,7	2750	689,5
20	60 80	100	40,3	1,5	10	2.035	1680	648,8	1710	699
20	80	200 300	39,9 39,9	0,8 0,4	9,8 9,8	2.035 2.035	2160 2760	658,9 677,9	2190 2790	708,5 727,7
	76	100	67	3,9	7,3	2.899	1690	666	1720	678,1
22	76	200	67	1,1	7,3	2.899	2490	672,1	2520	724,9
	100	300	50,2	0,6	7,3	2.899	2760	687,3	2790	759,7
	76	100	72,1	4,1	7,2	3.395	1870	688,9	1900	739,8
24	76	200	72,1	1,2	7,2	3.395	2740	701,1	2770	789,8
	100	300	54,1	0,7	7,2	3.395	3040	<i>7</i> 98,8	3070	889
	76	100	<i>7</i> 7,6	4,4	<i>7</i> ,1	3.965	1950	769,1	1980	866
26	100	200	58,2	1,5	<i>7</i> ,1	3.965	2510	<i>7</i> 95,2	2540	891,1
	100	300	58,2	0,7	7,1	3.965	3220	834,4	3250	930,7
	84	100	108,4	7,5	8,4	4.669	2000	769,1	2030	901,5
28	116	200	81,3	2,6	8,4	4.669	2550	813,6	2580	945,5
	170	300	54,2	1,5	8	4.669	2740	863,1	2770	998,3
20	84	100	115,3	8	8,3	5.320	2070	843,6	2100	975,3
30	120 1 <i>7</i> 0	200 300	86,5 57,7	2,7 1,6	8,3 8	5.320 5.320	2670 2850	960,1 1.012	2700 2880	1.092 1.144
	84	100	116	8,4	7,9	5.972	2170	968,1	2200	1.144
32	120	200	87	2,9	7,9	5.972	2780	1.076	2810	1.207
01	170	300	58	1,8	7,7	5.972	2960	1.207	2990	1.338
	84	100	128,7	8,8	8,1	6.677	2270	1.155	2300	1.287
34	120	200	96,5	3	8,1	6.677	2920	1.295	2950	1.427
	1 <i>7</i> 0	300	64,3	1,9	7,8	6.677	3110	1.400	3140	1.527
	84	100	135,9	9,3	8	7.420	2380	1.278	2410	1.409
36	120	200	101,9	3,2	8	7.420	3060	1.466	3090	1.598
	170	300	67,9	2	7,7	7.420	3250	1.516	3280	1.656
	84	100	143,4	10	7,9	8.252	2440	1.568	2470	1.707
38	120	200	107,5	3,3	7,9	8.252	3180	1.642	3210	1.782
	170	300	71,7	2,1	7,6	8.252	3360	1.709	3390	1.849
	84	100	150,6	10,5	7,7	9.093	2570	1.706	2600	1.856
40	120 1 <i>7</i> 0	200 300	112,9 <i>7</i> 5,3	3,5 2,2	7,7	9.093 9.093	3330 3520	1.786 1.993	3360 3550	1.935 2.144
	84	100	157,9	11	7,4 7,6	9.093	2640	1.847	2670	2.144
42	120	200	118,4	3,7	7,6	9.976	3430	2.020	3460	2.039
	170	300	78,9	2,3	7,3	9.976	3620	2.203	3650	2.396
	84	100	165	11,4	7,5	10.880	2710	2.000	2740	2.160
44	110	200	123,7	3,9	7,5	10.880	3530	2.155	3560	2.347
	170	300	82,5	2,4	7,1	10.880	3720	2.343	3750	2.535
	84	100	1 <i>7</i> 2,1	12	7,3	11.824	2770	2.110	2800	2.250
44	110	200	129,1	4	7,3	11.824	3640	2.258	3670	2.448
	170	300	86	2,5	7	11.824	3820	2.545	3850	2.646
	84	100	179,3	12,3	7,2	12.828	2850	2.474	2880	2.674
48	110	200	134,5	4,2	7,2	12.828	3730	2.690	3760	2.899
	170 84	300 100	154,1 320,9	19,8	8, <i>7</i> 9	12.848 13.935	3280 2510	2.905 2.698	3310 2550	3.115 2.902
50	110	200	240,7	6,8	9	13.935	3210	2.096	3250	3.149
30	170	300	160,4	4,2	8,6	13.935	3400	3.182	3440	3.386
	110	100	166,5	20,6	8,9	15.000	2560	2.959	2600	3.164
52	130	200	124,8	7	8,9	15.000	3290	3.239	3330	3.441
	180	300	83,2	4,3	8,5	15.000	3490	3.546	3530	3.755
	110	100	172,6	21,3	8,8	16.128	2610	3.142	2650	3.358
54	130	200	129,4	7,3	8,8	16.128	3360	3.445	3400	3.668
	180	300	86,3	4,5	8,3	16.128	3560	3.759	3600	3.980
	110	100	190,7	23,6	8,4	19.706	2760	4.070	2800	4.288
60	130	200	143	8,1	8,4	19.706	3580	4.438	3620	4.661
	180	300	95,3	5	7,9	19.706	3780	4833	3820	5.045
44	110	100	207,9	25,9	8,1	23.452	2900	5.141	2950	5.391
66	130 180	200 300	155,9 103,9	8,8 5,4	8,1 7,6	23.452 23.452	3800 4000	5.600 6.035	3850 4050	5.851 6.303
	110	100	226,9	28,6	7,0	27.996	3050	5.766	3100	6.015
72	130	200	170,2	12,4	7,7	27.990 27.996	3350	6.289	3400	6.533
, 4	180	300	113,5	5,9	7,2	27.996 27.996	4250	6.780	4300	7.032
	, ,,,,	, 555	, .	. 0,/	,,_	2, ., , 0	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, 5., 66	, ,,,,,,	. , .002

Tabela 11 JUNTA DE EXPANSÃO UNIVERSAL CLASSE 150 PSI

Universal Solda

Universal Flange

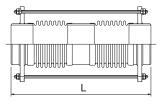
NOTAS EXPLICATIVAS

1. Os movimentos tabelados são considerados para movimentos não simultâneos. Caso ocorram movimentos simultaneamente, a seguinte equação de verificação deve ser satisfeita

 $\frac{\text{movimento axial}}{\text{movimento axial tabelado}} + \frac{\text{movimento lateral}}{\text{movimento lateral tabelado}} \leqslant 1,0$

2. Os movimentos tabelados s\u00e3o considerados para uma vida \u00e9til de aproximadamente 2000 ciclos segundo o m\u00e9todo de c\u00e1culo do EJMA. Caso seja desej\u00e1vel uma maior vida \u00e9til, os movimentos tabelados devem ser multiplicados pelos seguintes fatores de redu\u00e7\u00e3o:

Vida cíclica desejada (n° de ciclos)	5.000	10.000	25.000	50.000	1.000.000	
Fator de redução dos movimentos tabelados	0,801	0,683	0,563	0,493	0,314	


- 3. As informações descritas nestas tabelas são para temperaturas de 250°C. Para casos com temperatura entre 250°C e 400°C, multiplicar os valores das Constantes de Mola e da Pressão Máxima pelo fator de correção 0,87.
- 4. Máximo valor do movimento axial de extensão é de 50% do movimento axial tabelado para compressão.
- 5. Teste hidrostático para as juntas foi considerado: pressão teste = 1,5 x pressão projeto
- 6. A pressão máxima indicada, refere-se a menor das pressões que causam instabilidade no fole: <u>instabilidade de coluna</u> ou <u>instabilidade de plano</u> e não deve nunca ser ultrapassada, quer seja em operação ou em teste hidrostático. Este valor de pressão máximo não deve ser utilizado como pressão máxima de projeto.
- A furação e faceamento dos flanges segue o padrão ASME B16.5 em sua classe de pressão correspondente, exceto para juntas Classe 50 psi que sequem o padrão de furação segundo ASME B-16.5 150 psi
- 8. Os terminais para solda são fabricados com bisel de 37,5°, em ASTM-A-106 SCH 40 para tubulações de até DN 10" e em A36 ou equivalente para DNs superiores, nas espessuras de 12,7mm para DNs entre 12" e 14".
- 9. O material de fole considerado nas tabelas é ASTM A-240 TP 304 ou TP 321. Outros materiais, sob consulta.
- 10. Para pressões e/ou diâmetros não atendidos nesta tabela, preencher o formulário que se encontra no final do catálogo e encaminhá-lo para TEADIT JUNTAS.

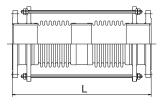

DN	Movimentos não Concorrentes		Constante	es de Mola	Pressão	Área		Comprimento L			
DIN	Axial	Lateral	Axial	Lateral	Máxima	Efetiva	Ponta S	Solda	Flo	inge	
(pol)	(mm)	(mm)	(kgf/mm)	(kgf/mm)	(psi)	(cm ²)	(mm)	(kg)	(mm)	(kg)	
	20	50	22,9	0,2	27,9	29,5	600	14,7	620	19,3	
2	20	100	22,9	0,1	27,9	29,5	<i>75</i> 0	16,4	770	21	
	20	150	22,9	0	27,9	29,5	900	18,7	920	23,3	
	24	50	22,9	0,3	23,3	43,1	600	16,7	620	23,1	
2,1.2	24	100	22,9	0,1	23,3	43,1	750	19,2	770	25,6	
	24	150	22,9	0,1	23,3	43,1	900	21,5	920	27,9	
	24	50	28,8	0,5	27,3	63,6	600	21,9	620	29,1	
3	24	100	28,8	0,2	27,3	63,6	790	25,6	810	32,8	
	24	150 50	28,8 32,9	0,1	27,3 27,1	63,6 82,8	990 620	28,9 26,4	1010 640	36,1 36,4	
3,1.2	24	100	32,9	0,0	27,1	82,8	850	31,9	870	41,6	
3,1.2	24	150	32,9	0,2	27,1	82,8	1080	35,2	1100	45,2	
	30	50	31,3	0,1	24,6	104,8	600	34,6	620	46,4	
4	30	100	31,3	0,3	24,6	104,8	800	38,3	820	50,1	
•	30	150	31,3	0,1	24,6	104,8	990	41,4	1010	53,2	
	30	50	39	1,1	24,3	159,6	660	41,2	680	54,8	
5	30	100	39	0,4	24,3	159,6	900	46,1	920	60,7	
	30	150	39	0,2	24,3	159,6	1140	54,2	1160	67,7	
	30	50	47,5	1,4	24,4	225,7	<i>77</i> 0	52,9	790	<i>7</i> 0,1	
6	30	100	47,5	0,4	24,4	225,7	1060	63,4	1080	80,6	
	30	150	47,5	0,2	24,4	225,7	1350	72	1370	89,2	
	50	100	50,8	1	24,7	382,9	1040	95,2	1070	122,8	
8	50	200	50,8	0,3	24,7	392,9	1540	121,6	1570	148,8	
	50	300	50,8	0,1	24,7	382,9	2050	140,4	2080	167,1	
10	50 50	100	64,6	1,2	24,4	592,9	1180	141,1	1210	179,1	
10	50	200 300	64,6 64,6	0,3 0,2	24,4 24,4	592,9 592,9	1810 2450	1 <i>7</i> 8,4 219	1840 2480	21 <i>7</i> ,4 25 <i>7</i> ,9	
	50	100	76,4	1,5	23,6	833,7	1410	185	1440	237,9	
12	50	200	76,4	0,4	23,6	833,7	2160	250,2	2190	308,2	
12	50	300	76,4	0,4	23,6	833,7	2910	306,5	2940	364,2	
	44	100	84,1	1,7	23,0	1.003	1480	249	1510	329,5	
14	44	200	84,1	0,4	23,1	1.003	2330	311,6	2360	393,6	
	44	300	84,1	0,2	23,1	1.003,	3150	387,8	3180	469,8	
					l					L	

Tabela 11 JUNTA DE EXPANSÃO UNIVERSAL CLASSE 150 PSI (cont.)

DNI	Movimentos não Concorrentes Constantes de Mola		Pressão Área		Comprimento L					
DN	Axial	Lateral	Axial	Lateral	Máxima	Efetiva	Ponta S	Solda	Flo	inge
(pol)	(mm)	(mm)	(kgf/mm)	(kgf/mm)	(psi)	(cm ²)	(mm)	(kg)	(mm)	(kg)
	44	100	96,3	1,9	22	1.309	1670	333,6	1700	422,6
16	44	200	96,3	0,5	22	1.309	2630	441,8	2660	530,8
	44	300	96,3	0,3	22	1.309	3360	532	3390	620,9
	44	100	109,3	2,1	20,9	1.654	1800	440,8	1830	548,7
18	44	200	109,3	0,7	20,9	1.654	2710	526,7	2740	644,7
	44	300	109,3	0,4	20,9	1.654	3460	581,3	3490	699,1
	70	100	208,4	10,6	24,3	2.463	1720	600,2	1750	750,1
20	70	200	208,4	3,1	24,3	2.463	2470	610,9	2500	760,2
	70	300	208,4	1,5	24,3	2.463	3210	629,2	3240	780
	80	100	226,7	11,5	23,8	2.922	1800	651,2	1830	802
22	80	200	226,7	3,4	23,8	2.922	2620	716,8	2650	866,3
	80	300	226,7	1,5	23,8	2.922	3460	<i>7</i> 51,3	3490	902
	80	100	246,2	12,7	23,4	3.421	1970	689,1	2000	888,1
24	80	200	246,2	3,6	23,4	3.421	2870	724	2900	922.8
	80	300	246,2	1,7	23,4	3.421	3760	801,7	3800	998,2

Tabela 12 JUNTA DE EXPANSÃO UNIVERSAL CLASSE 300 PSI

Universal Solda

Universal Flange

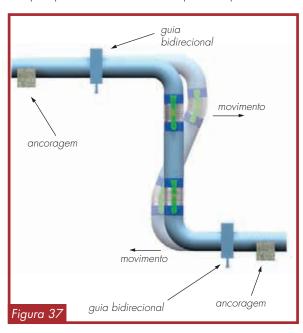
NOTAS EXPLICATIVAS

1. Os movimentos tabelados são considerados para movimentos não simultâneos. Caso ocorram movimentos simultaneamente, a seguinte equação de verificação deve ser satisfeita

 $\frac{\text{movimento axial}}{\text{movimento axial tabelado}} + \frac{\text{movimento lateral}}{\text{movimento lateral tabelado}} \leqslant 1,0$

2. Os movimentos tabelados são considerados para uma vida útil de aproximadamente **2000 ciclos** segundo o método de cálculo do EJMA. Caso seja desejável uma maior vida útil, os movimentos tabelados devem ser multiplicados pelos seguintes fatores de redução:

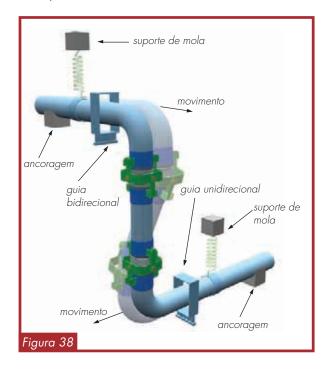
Vida cíclica desejada (n° de ciclos)	5.000	10.000	25.000	50.000	1.000.000
Fator de redução dos movimentos tabelados	0,801	0,683	0,563	0,493	0,314

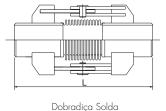

- 3. As informações descritas nestas tabelas são para temperaturas de 250°C. Para casos com temperatura entre 250°C e 400°C, multiplicar os valores das Constantes de Mola e da Pressão Máxima pelo fator de correção 0,87.
- 4. Máximo valor do movimento axial de extensão é de 50% do movimento axial tabelado para compressão.
- 5. Teste hidrostático para as juntas foi considerado: pressão teste = 1,5 x pressão projeto
- 6. A pressão máxima indicada, refere-se a menor das pressões que causam instabilidade no fole: <u>instabilidade de coluna</u> ou <u>instabilidade de plano</u> e não deve nunca ser ultrapassada, quer seja em operação ou em teste hidrostático. Este valor de pressão máximo não deve ser utilizado como pressão máxima de projeto.
- A furção e faceamento dos flanges segue o padrão ASME B16.5 em sua classe de pressão correspondente, exceto para juntas Classe 50 psi que seguem o padrão de furação segundo ASME B-16.5 150 psi
- 8. Os terminais para solda são fabricados com bisel de 37,5°, em ASTM-A-106 SCH 40 para tubulações de até DN 10" e em A36 ou equivalente para DNs superiores, nas espessuras de 12,7mm para DNs entre 12" e 14".
- 9. O material de fole considerado nas tabelas é ASTM A-240 TP 304 ou TP 321. Outros materiais, sob consulta.
- 10. Para pressões e/ou diâmetros não atendidos nesta tabela, preencher o formulário que se encontra no final do catálogo e encaminhá-lo para TEADIT JUNTAS.

DN	Movimentos não Concorrentes		Constante	s de Mola	Pressão	Área		Compi	rimento L	
DIN	Axial	Lateral	Axial	Lateral	Máxima	Efetiva	Ponta Solda		Flo	ange
(pol)	(mm)	(mm)	(kgf/mm)	(kgf/mm)	(psi)	(cm ²)	(mm)	(kg)	(mm)	(kg)
	16	50	38,3	0,3	38,6	29,7	600	1 <i>7</i> ,3	620	23,7
2	16	100	38,3	0,1	38,6	29,7	760	18,5	780	24,9
	16	150	38,3	0,1	38,6	29,7	950	21,8	970	28,2
	20	50	39,1	0,4	38,2	43,2	600	20,7	620	29,7
2,1/2	20	100	39,1	0,1	38,2	43,2	790	22,7	810	31,3
	20	150	39,1	0,1	38,2	43,2	990	25,1	1010	34,1
	20	50	49	0,6	38,4	63,9	650	28,6	670	40,3
3	20	100	49	0,2	38,4	63,9	900	32,1	920	43,9
	20	150	49	0,1	38,4	63,9	1130	37,1	1150	48,9
	20	50	56,8	0,7	38,4	83	680	31,4	700	46,8
3,1/2	20	100	56,8	0,2	38,4	83	970	34,6	990	50
	20	150	56,8	0,1	38,4	83	1250	39	1270	54,4
_	24	50	56,2	1,2	36,7	105,9	630	39,2	650	58
4	24	100	56,2	0,4	36,7	105,9	860	41,2	880	61
	24	150	56,2	0,2	36,7	105,9	1090	47,1	1110	67
	30 30	50 100	58,9	1,7	36,7	160,8	660 910	45,8	680	71,2
5	30	150	58,9 58,9	0,5 0,3	36,7 36,7	160,8 160,8	1150	49,4 58,9	930 1170	74,8 84,4
	30	50	71,1	2,2	36,4	227,3	770	77,7	790	113,1
6	30	100	71,1	0,6	36,4	227,3	1070	81,3	1090	116,7
O	30	150	71,1	0,3	36,4	227,3	1370	84,8	1390	120,1
	54	100	92	2,3	35,3	477,2	1070	157,3	1100	209,9
8	54	200	92	0,7	35,3	477,2	1550	170,5	1580	223,1
Ū	54	300	92	0,3	35,3	477,2	2050	210,1	2080	262,7
	54	100	110,2	2,8	34,1	705,7	1180	280	1210	305
10	54	200	110,2	0,8	34,1	705,7	1750	281,5	1780	305,9
	54	300	110,2	0,4	34,1	705,7	2320	313,6	2350	339
	54	100	134,2	3,4	34,1	964,9	1400	345,3	1430	370,7
12	54	200	134,2	1	34,1	964,9	2080	396,1	2110	421,5
	54	300	134,2	0,5	34,1	964,9	2750	454,4	2780	479,8
	44	100	172,5	3,4	33,5	1.149	1580	528,9	1610	554,3
14	44	200	172,5	1	33,5	1.149	2460	618,8	2490	644,2
	44	300	172,5	0,4	33,5	1.149	3320	698,6	3350	724

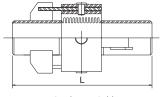
8.6. Dobradiça

Juntas de Expansão Dobradiças são usadas para absorver movimentos laterais em um só plano. São normalmente usadas em conjunto de duas ou três, cada junta trabalhando com um movimento angular no seu respectivo plano (figura 37).


As dobradiças são projetadas para absorver toda a força de pressão, simplificando as ancoragens que suportam a tubulação. Outras características das Juntas de Expansão Dobradiças são o seu tamanho compacto, que facilita a instalação e a possibilidade de compensar dilatações térmicas de sistemas complexos, nem sempre possível com outros tipos de juntas.


8.7. CARDÂNICA

Para absorver movimentos em diferentes planos são usadas Juntas de Expansão Cardânicas, que oferecem as mesmas vantagens das Juntas Dobradiças, em aplicações multiplanares (figura 38).


A capacidade de absorver movimentos angulares em qualquer plano é freqüentemente utilizada com duas juntas absorvendo movimentos laterais em dois planos.

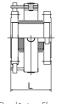


Tabela 13 JUNTA DE EXPANSÃO CARDÂNICA E DOBRADIÇA CLASSE **50 PSI**

Dobradiça Flange

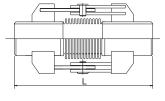
Cardânica Solda

Cardânica Flange

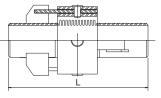
NOTAS EXPLICATIVAS

1. Os movimentos tabelados são considerados para uma vida útil de aproximadamente **2000 ciclos** segundo o método de cálculo do EJMA. Caso seja desejável uma maior vida útil, os movimentos tabelados devem ser multiplicados pelos seguintes fatores de redução:

Vida cíclica desejada (nº de ciclos)	5.000	10.000	25.000
Fator de redução dos movimentos tabelados	0,801	0,683	0,563


- As informações descritas nestas tabelas são para temperaturas de 250°C. Para casos com temperatura entre 250°C e 400°C, multiplicar os valores das Constantes de Mola e da Pressão Máxima pelo fator de correção 0,87.
- 3. Máximo valor do movimento axial de extensão é de 50% do movimento axial tabelado para compressão.
- 4. Teste hidrostático para as juntas foi considerado: pressão teste = 1,5 x pressão projeto
- 5. A pressão máxima indicada, refere-se a menor das pressões que causam instabilidade no fole: <u>instabilidade de coluna</u> ou <u>instabilidade de plano</u> e não deve nunca ser ultrapassada, quer seja em operação ou em teste hidrostático. Este valor de pressão máximo não deve ser utilizado como pressão máxima de projeto.
- 6. A furação e faceamento dos flanges segue o padrão ASME B16.5 em sua classe de pressão correspondente, exceto para juntas Classe 50 psi que seguem o padrão de furação segundo ASME B-16.5 150 psi
- 7. Os terminais para solda são fabricados com bisel de 37,5°, em ASTM-A-106 SCH 40 para tubulações de até DN 10" e em A36 ou equivalente para DNs superiores, nas espessuras de 6,3mm para DNs entre 12" e 24", de 9,5mm para DNs de 26" a 48" e de 12,7mm para DNs de 50" a 72".
- 8. O material de fole considerado nas tabelas é ASTM A-240 TP 304 ou TP 321. Outros materiais, sob consulta.
- 9. Para pressões e/ou diâmetros não atendidos nesta tabela, preencher o formulário que se encontra no final do catálogo e encaminhá-lo para TEADIT JUNTAS.

						Dobr	adiça			Card	lânica	
DN	Movimentos	Constantes de Mola	Pressão	Área	(Comprimento L	/ Peso Unitár	io	(Comprimento l	. / Peso Unitái	io
DIN	Angular	Angular	Máxima	Efetiva	Ponta	Solda	Flo	ınge	Ponta	Solda	Fla	nge
(pol)	(graus)	(kgf/m/graus)	(psi)	(cm ²)	(mm)	(kg)	(mm)	(kg)	(mm)	(kg)	(mm)	(kg)
	23	0,2	14,1	29	300	4,1	90	3,1	300	9,7	90	6,8
2	39	0,1	7,3	29	335	4,2	125	3,3	335	9,9	125	6,9
	35	0,1	5,4	29,1	395	4,5	185	4	395	10,5	185	7
	18	0,3	13,9	42,4	300	5,4	90	4	300	12,6	90	8,5
2,1/2	30	0,2	11,5	42,4	335	6	125	4,2	335	14	125	8,6
	40	0,2	5,9	42,5	395	6,2	185	4,8	395	15,5	185	8,9
	14	0,5	13,7	62,9	330	6,6	95	4,9	330	16,6	95	12,2
3	24	0,3	13,7	62,9	365	7,2	130	5,9	365	17,5	130	13,1
	34	0,3	7,3	63,1	425	7,5	195	6,2	425	18,6	195	14
2 - 12	12	0,8	13,6	82	330	8	95	6,5	330	19	95	14
3,1/2	21	0,5	13,6	82	365	8,6	130	7	365	19,8	130	15,1
	30	0,5	10,2	82,1	425	9,6	195	7,6	425	21,1	195	16
4	18 30	0,5	9 70	103,4 103,4	400 440	9,1 9,9	110 155	9,8	400 440	21 21,8	110 155	18,1
4	22	0,3	5,3	103,4	495	10,8	245	10,6	495	21,8	245	18,3
	14	0,4	8,8	157,8	400	10,8	110	10,6	493	24,9	110	18,9 20,3
5	24	0,6	o,o 8,8	157,8	440	10,7	155	9,3	440	25,2	155	20,3
3	18	0,6	5,4	157,8	520	11,8	235	10,2	520	25,2	235	21,2
	12	1,7	8,7	223,8	420	15,5	110	13,2	420	37,9	110	33,8
6	20	1	8, <i>7</i>	223,8	460	16,8	155	14	460	41,2	155	34,1
J	25	1,2	9,3	224,1	515	17,8	270	16,2	515	42,8	270	34,7
	11	3,6	8,3	378,8	555	21,3	130	20	555	39,9	130	38
8	17	2,4	8,3	378,8	595	26,9	170	20,2	595	53,5	170	38,4
	26	1,5	6	378,8	665	28,5	290	21,1	665	55,1	290	39,2
	9	7	8,1	587,9	605	34,7	135	25,2	605	68,1	135	50,1
10	13	4,7	8,1	587,9	645	37	190	26,1	645	70	190	51,1
	21	3	7,2	587,9	710	38,5	300	28,5	710	71,5	300	52
	7	11,7	7,9	827,5	715	51	140	37	715	105,1	140	73,5
12	11	7,8	7,9	827,5	755	52,8	205	38,8	<i>7</i> 55	107,8	205	74,7
	17	5	7,3	827,5	820	54,6	315	40	820	108,9	315	75,3
	7	15,7	7,8	996,2	795	63,8	146	44,9	<i>7</i> 95	129,4	146	89,9
14	10	10,4	7,8	996,2	835	65,2	206	46,3	835	130,5	206	90,6
	16	6,7	7,1	996,2	900	66,8	320	48,9	900	131,7	320	91,8
	6	23,4	7,4	1,301	795	80,8	150	52,7	795	143,6	150	98,8
16	9	15,6	7,4	1,301	835	81,5	185	54,8	835	144,8	185	99,6
	14	10	6,8	1,301	900	83,9	245	55,7	900	145,9	245	101,1


Tabela 13 JUNTA DE EXPANSÃO CARDÂNICA E DOBRADIÇA CLASSE **50 PSI** (cont.)

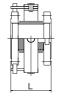

					LASSE	30			11.)				
	DNI	Movimentos	Constantes de Mola				Comprimento L	. / Peso Unitá	rio	(Comprimento L	/ Peso Unitá	rio
	DIN	Angular	Angular	Máxima	Efetiva	Ponta	Solda	Flo	ange	Ponta	Solda	Flo	inge
18	(pol)	(graus)	(kgf/m/graus)	(psi)	(cm ²)	(mm)	(kg)	(mm)	(kg)	(mm)	(kg)	(mm)	(kg)
18		5	33,1	7	1.646	895	101	160	73,7	895	175,8	160	122,1
16	18												
20		16	15,5	9,1	1.649			300		1010	179,8	300	
14		7		10,1	2.035	910	122,2	171	83	910	197,2	171	137,7
7	20												
22													
14													
24 9 102,1 7,2 3,395 98.0 107,8 460 156,3 980 200,3 460 262,5 6 170,9 7,2 3,395 80 107,8 146 167,0 300,6 550 211 410 107 300,6 550 211 410 205 550 217,0 305 590 118,1 175,5 980 310,7 400 226 6 8 128,1 7,1 3,065 690 188,7 400 175,5 980 310,7 400 292,0 6 281,3 8.4 4,669 102 1180 197,2 485 193,7 905 325 485 340,2 905 325 485 310,7 905 325 485 307,7 905 325 485 302,7 905 325 485 340 325 485 312,2 110 341,2 650 320,2 30 30 <th< th=""><th>22</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	22												
102,1 7,2 3,395 690 174,8 460 158,3 980 290,3 460 265,5													
13													
26 8 120,9 7,1 3,065 035 179,8 415 172,6 935 299,3 415 289,3 26 8 12 85,4 7,1 3,065 1070 196,7 550 180 1070 326,2 550 299,9 28 8 711 8,4 4,669 1020 221,3 540 195,2 1020 351,8 540 323,5 28 8 711 8,4 4,669 1020 221,3 540 195,2 1020 351,8 540 323,5 28 8 711 8,4 4,669 1020 221,3 540 195,2 1020 351,8 540 323,5 29 6 340,9 8,3 5,320 965 338,5 485 227,6 965 488,7 485 387,5 30 8 255,7 8,3 5,320 1020 347,4 540 295,2 1130 507,7 650 403,8 31 12 170,5 8,3 5,320 1020 347,4 540 295,2 1130 507,7 650 405,8 32 7 886 7,9 5,072 1015 367,7 485 322,4 1015 510,9 485 447,8 31 17 192,4 7,9 5,072 1180 391,1 650 336,6 180 541,5 604,5 34 7 358 8,1 6,677 1076 442,2 540 384,4 1070 559,4 540 480,9 36 7 420 8 7,420 1120 511,6 540 440,1 1120 637,6 545 36 7 420 8 7,420 120 511,6 540 440,1 120 637,6 545 37 4 657,4 7,9 8,252 105 552,6 485 433,6 105 624,5 650 494,7 38 6 493 7,9 8,252 105 552,6 485 630,0 671,6 650 566,4 39 380,5 7,9 9,072 1180 580,5 540 540,4 30 4 657,4 7,9 8,252 105 552,6 485 630,0 671,6 650 566,4 30 4 657,4 7,9 8,252 105 552,6 485 640,6 1115 815,8 451 752,6 31 4 657,4 7,9 8,252 105 552,6 485 640,6 1115 815,8 451 752,6 32 7 8 7,9 8,252 105 552,6 485 640,6 1115 815,8 451 752,7 31 4 6 6 77 79,093 1170 640,9 540 540,9 1170 679,9 540 596,4 31 4 6 77 7,9 7,9 1180 7,9 7	24												
12													
12	26			7,1 71									
28 8 211 8.4 4.699 9.65 199.5 485 193.7 965 325 485 317.5 2 1020 321.8 540 325.5 122 140.7 8.4 4.699 1130 259.1 550 201.2 1130 431.2 550 335.2 6 340.9 8.3 5.320 1930 347.4 540 283 1020 482.4 540 393.7 12 170.5 8.3 5.320 1130 364.4 550 255.2 1130 307.9 50.9 405.3 38.5 12 170.5 8.3 5.320 1130 364.4 550 255.2 1130 307.9 50.4 405.8 12 170.5 8.3 5.320 1130 364.4 550 255.2 1130 307.9 50.4 405.8 11 192.4 7.9 5.972 1015 367.7 485 327.4 1015 310.9 485 447.8 32.7 11 192.4 7.9 5.972 1016 367.7 485 327.4 1015 310.9 485 447.8 32.7 11 192.4 7.9 5.972 1070 377.3 540 336.6 1180 344.5 50 450.4 437.8 34.7 358 8.1 6.677 1070 447.2 540 384.4 1070 559.4 540 485.7 32.4 1015 559.4 540 485.4 100.9 10.0 238.7 8.1 6.677 1070 447.2 540 384.4 1070 559.4 540 480.9 10 238.7 8.1 6.677 1180 468.9 650 396.7 1180 385.6 650 484.7 100 238.7 8.1 6.677 1180 468.9 650 396.7 1180 385.6 650 484.7 100 288.7 8.1 6.677 1180 468.9 650 396.7 1180 385.6 650 484.7 100 288.7 8.1 6.677 1120 5419.6 485 483.6 1065 560.4 560 480.9 10 280.8 7.420 1105 5410.6 489.6 485 433.6 1065 62.4 560 544.6 10.2 60.0 8 7.420 1105 5410.6 549.6 485 433.6 1065 62.4 560 540.4 10.2 60.0 8 7.420 110.5 540.6 485 433.6 1065 62.4 560 540.4 10.2 60.0 8 7.420 110.5 540.6 485 433.6 1065 62.4 560 540.4 10.2 60.0 8 7.420 110.5 540.6 485 437.1 110.0 637.6 540.5 550.4 485 430.4 657.4 7.9 8.252 1120 543.9 540 4771 1120 650.9 540.6 540.9 64.0 40.1 1120 637.6 540.5 550.4 485 430.4 657.4 7.9 8.252 1120 543.9 540 4771 1120 650.9 540.5 500.4 485 430.4 657.4 7.9 8.252 1120 543.9 540 4771 1120 650.9 540.5 500.4 485 430.4 657.4 7.9 8.252 1120 543.9 540 4771 1120 650.9 540.5 500.4 485 430.4 657.4 7.9 9.093 1170 650.9 540.5 590.7 1170 833.4 540.7 71.3 120.0 690.3 650.0 610.3 485.6 610.6 1115 810.8 885.7 725.7 40.0 480.9 7.0 650.0 598.3 1280 865.5 650.5 746.8 847.7 7.9 9.093 1170 650.9 540.5 590.7 1170 833.4 540.7 71.1 120.6 63.9 560.5 746.8 84.7 72.7 9.093 1170 650.9 540.5 590.7 1170 830.4 540.7 71.1 1120 650.9 550.4 650.5 72.4 845.5 820.4 845.5 820.4 845.5 820.4 845.5 820.4 845.5 820.4 845.5 820.4 845.5	20			7,1									
28							,						
12	28												
30 8 2557 8,3 5320 965 338,5 485 278,6 965 468,7 485 387,5 387,5 487,4 540 393,7 481,5 387,5 381,4 170,5 8,3 5320 1130 365,4 650 295,2 1130 507,9 650 405,8 467,4 170,5 183,4 540 381,5 387,7 485 322,4 1015 510,9 485 447,8 32,7 288,6 7,9 5.972 1070 377,3 540 326,7 1070 524,4 540 443,8 47,8 47,8 47,4 8,1 6,677 1015 434,4 485 378,4 1015 543,7 485 473,6 473,6 10 238,7 8,1 6,677 1070 447,2 540 384,4 1070 595,4 547, 485 473,6 10 238,7 8,1 6,677 1070 447,2 540 384,4 1070 595,4 540 480,9 10 238,7 8,1 6,677 1180 469,9 650 390,7 1180 585,6 650 469,7 36,8 10 238,7 8,1 6,677 1180 469,9 650 390,7 1180 585,6 650 469,7 36,8 10 238,7 8,1 6,677 1180 469,9 650 390,7 1180 585,6 650 469,7 36,8 10 288,7 8,1 6,677 1180 469,9 650 390,7 1180 585,6 650 494,7 36,8 10 288,7 8,1 6,677 1180 469,9 650 390,7 1180 585,6 650 494,7 36,8 10 288,7 8,1 6,677 1180 469,9 650 390,7 1180 585,6 650 494,7 36,8 10 280,7 8,1 8,1 8,1 8,1 8,1 8,1 8,1 8,1 8,1 8,1	_5												
10													
12	30												
32 7 2886 7.9 5.972 1015 30.7 485 322.4 1015 510.9 485 447.4 433.7 7 2886 7.9 5.972 11070 37.73 540 302.7 107.0 522.4 430.4 433.4 433.7 358 4.7 4.8 1.6 6.677 1015 444.4 483 378.4 1015 543.7 485 473.6 467.4 485 473.6 607 599.4 440 480.9 49.0 49.0 485 438.4 1070 599.4 540 480.9 485 433.6 105.6 500 596.7 1180 585.6 650 494.7 485 433.6 105.6 624.5 885.5 650 494.7 485 433.6 105.6 624.5 885.5 630 896.7 1120 637.2 485.8 123.0 670.5 550.5 480.5 543.9 430 479.2 8252 1120.5 543.9 4				8,3									
32 7 288,6 7,9 5.972 1070 377,3 540 326,7 1070 524,4 560 453,7 34 7 358 8,1 6.677 1070 447,2 540 334,4 1015 543,7 485 473,6 34 7 358 8,1 6.677 1070 447,2 540 384,4 1070 559,4 540 480,9 36 7 420 8 7,420 1005 499,6 485 433,6 1005 637,6 540 550 540 550 540 550 540 550 542,5 485 543 540 100 280 8 7,420 123 550 485 433,6 100 560 553,4 485 467,1 1065 650 554,4 485 533,9 485 533,9 480 487,1 170 650 552,4 485 583,9 382 1170 <td< th=""><th></th><th>5</th><th>384,9</th><th>7,9</th><th></th><th>1015</th><th>367,7</th><th></th><th></th><th>1015</th><th></th><th>485</th><th>447,8</th></td<>		5	384,9	7,9		1015	367,7			1015		485	447,8
34 7 358 8,1 6.677 1015 424,4 485 378,4 1015 543,7 485 472,6 404 480,0 384,4 1010 589,4 540 480,0 404,7 540 380,7 1180 585,6 650 494,7 36 7 420 8 7,420 1120 511,6 540 440,1 1120 637,6 540 550,4 550,40 550,40 550,40 550,40 550,40 550,40 550,40 550,40 550,40 550,40 550,40 550,40 550,40 550,40 550,40 550,40 550,40 560,40 480,60 650,50 565,54 485,513,90 540,40 560,40 487,11 1120,60 650,50 560,50 560,40 487,1 1120,60 690,90 560,40 487,11 1120,60 690,90 560,50 483,51 810,00 690,30 690,30 480,40 690,30 480,40 480,50 690,30 11170 <	32		288,6				377,3	540	326,7	1070		540	
34 7 358 8,1 6.677 11070 447,2 540 384,4 1070 559,4 540 480,9 36 7 228 8,1 6.677 1180 468,9 650 384,0 1055 624,5 485 543 36 7 420 8 7.420 1120 511,6 540 440,1 1120 637,6 540 540,1 1120 637,6 540 540,1 1120 637,6 540 550,6 650 565,5 560 553,7 650 552,3 48 640,1 1120 610,6 650 565,5 563,3 485 563,7 485 583,9 38 6 493 7.9 8.252 1106,5 553,4 487,1 110,5 650,3 560,4 590,3 160,5 563,3 748,5 583,9 9 328,7 7.9 8.252 1120 543,9 540 487,1 1120 697,3 650													
10										1			
36 7 420 8 7,420 1065 499,6 485 433,6 1065 540 540,1 540 550,4 543 540 550,4 550,4 550,4 550,4 550,4 550,4 550,4 550,4 550,4 550,4 550,4 550,4 550,4 550,4 550,4 40,1 1120 637,6 540 550,5 555,4 650,4 40,1 1120 679,9 540 550,6 40,7 110,0 650,7 948,5 583,9 40 477,1 110,0 679,9 540 590,4 590,4 477,1 110,0 679,9 540 590,4 590,7 940,3 111,0 679,9 540 590,4 471,1 1120 679,9 540 590,6 1115 88,5 723,7 9,903 1117 660,9 540 590,6 1117 83,4 540 723,4 485 723,1 148 722,1 148 885,6 450 724,4	34												
36 7 420 8 7.420 1120 511.6 540 440.1 1120 637.6 540 550.4 550.4 550.4 550.4 657.6 657.6 67.6 657.6 565.4 657.6 657.8 1230 677.6 650 655.4 550.6 452.8 1230 679.9 540 565.5 485 583.9 388 6 493 7.9 8.252 1210 543.9 540 477.1 1120 679.9 540 590.4 560.0 431 1230 690.3 650 163.3 40 6 570.8 7.7 9.093 1115 652.6 485 580.6 1115 815.8 485 725.7 40 6 570.8 7.7 9.093 1170 666.9 540 590.7 1170 833.4 540 725.7 41 827.1 7.6 9.976 1170 691.1 540 617.5 1170 833.4 </th <th></th> <th>1</th> <th></th> <th></th>											1		
10	0.4												
38 6 493 7,9 8.252 1005 523 485 467,1 1005 653,7 485 598,4 9 328,7 7,9 8.252 1120 543,9 540 477,1 1120 679,9 540 590,4 590,4 40 6 570,8 7,7 9.093 1115 652,6 485 580,6 1115 818,8 485 725,7 9 380,5 7,7 9.093 1115 662,6 485 580,6 1115 818,8 485 725,7 9 380,5 7,7 9.093 1115 680,8 485 610 1115 880,6 485 703,1 4 875,1 7,6 9.976 1115 680,8 485 610 1115 880,6 485 703,1 4 997,4 7,5 10.880 1117 710,1 485 640,6 1115 883,4 850 789,4 <tr< th=""><th>36</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></tr<>	36												
38 6 493 7,9 8.252 1120 543,9 540 477,1 1120 679,9 540 596,4 40 6 570,8 7,7 9.093 1115 652,6 485 580,6 1115 815,8 485 725,7 40 6 570,8 7,7 9.093 1170 666,9 540 590,7 1170 833,4 540 734,1 4 875,1 7,6 9.976 1115 680,8 485 610 1115 850,6 485 763,1 746,8 42 5 656,3 7,6 9.976 1170 691,1 540 617,5 1170 878,4 540 771,9 42 5 656,3 7,6 9.976 1180 702 650 630 1280 898,8 650 650,5 789,4 44 44 997,4 7,5 10.880 1115 710,1 485 640,6													
4 761,1 7,7 9,093 1115 652,6 485 580,6 1115 815,8 485 725,7 40 6 570,8 7,7 9,093 11170 666,9 540 590,7 1170 833,4 540 734,1 9 380,5 7,7 9,093 11280 700 650 598,3 1280 865 650 734,1 42 5 656,3 7,6 9,976 1115 680,8 485 610 1117 878,4 540 771,9 8 437,6 7,6 9,976 1115 680,8 485 610 1115 878,4 540 771,9 8 437,6 7,6 9,976 1180 702 650 630 1280 89,8 650 789,4 44 5 748,1 7,5 10,880 1170 729,1 540 647,3 1170 912,7 540 809,7	32			7,9									
4 761,1 7.7 9,093 1115 652,6 485 580,6 1115 815,8 485 725,7 9,093 1170 666,9 540 590,7 1170 833,4 540 734,1 9,093 1180 700 650 598,3 1280 865 650 746,8 734,1 7,5 10,6 9,976 1170 680,8 485 610 1115 850,6 485 763,1 42 5 656,3 7,6 9,976 1170 691,1 540 617,5 1170 878,4 540 771,9 8 437,6 7,6 9,976 1180 702 650 630 1280 899,8 650 789,4 4 997,4 7,5 10,880 1115 710,1 485 640,6 1115 893,3 485 800,6 44 5 748,1 7,5 10,880 1170 729,1 540 647,3 1170 912,7 540 809,7 8 8 498,7 7,5 10,880 1170 729,1 540 647,3 1170 912,7 540 809,7 8 8 498,7 7,5 10,880 1180 740,8 650 660,3 1280 936,4 650 827,9 44 1,130 7,3 11,824 1115 743,3 485 669,7 1115 929,9 485 850,9 44 847,9 7,3 11,824 1115 743,3 485 669,7 1115 929,9 485 850,9 44 847,9 7,3 11,824 1180 779,2 650 679,7 1280 975 650 849,6 6 6 639 7,2 12,828 1115 786,4 485 763,3 1115 983 485 954,1 48 4 958,4 7,2 12,828 1115 808,4 540 771,3 1170 1,010 540 964 66 6 639 7,2 12,828 1180 819,1 650 789,9 1280 1,036 650 984 66 6 639 7,2 12,828 1180 819,1 650 789,9 1280 1,036 650 984,6 6 6 639 7,2 12,828 1280 819,1 650 789,9 1280 1,036 650 986,6 72 1387 8,9 15,000 1165 831,4 485 788,9 1165 1,065 485 985,4 1,083 8,9 15,000 1220 911,1 540 836,6 1220 1,079 540 996,6 6 722 7 13,914 1300 877,7 650 814,2 1300 1,110 550 1,089 8 693,7 8,9 15,000 1300 925,1 650 860,6 1330 1,238 560 1,083 8 693,7 8,9 15,000 1300 925,1 650 860,6 1330 1,238 560 1,083 8 693,7 8,9 15,000 1300 925,1 650 860,6 1330 1,238 560 1,083 8 773,2 8,8 16,128 1305 1,014,07 540 1,201 1320 1,471 540 1,89 8 773,2 8,8 16,128 1303 1,01,6 650 988,6 1330 1,296 650 1,385 8 1,044 8,4 1,044 8,4 1,0706 1320 1,140,7 540 1,201 1320 1,471 540 1,352 8 1,354 8,1 1,354 8,1 1,3452 1320 1,140,7 540 1,201 1320 1,471 540 1,352 8 1,354 8,1 1,354 8,1 1,354 8,1 1,3452 1320 1,140,7 540 1,201 1320 1,471 540 1,352 8 1,354 8,1 1,354 8,1 1,355 1,359 1,350 1,461 1,430 1,484 650 1,354 8,1 1,354 8,1 1,3452 1320 1,140,7 540 1,415 1,430 1,484 650 1,619 7 1,354 8,1 1,33452 1320 1,140,7 540 1,415 1,430 1,484 650 1,619 7 1,354 8,1 1,3452 1320 1,140,7 540 1,415 1,430 1,484 650 1,61	30												
40 6 570,8 7,7 9,093 1170 666,9 540 599,7 1170 833,4 540 734,1 4 380,5 7,7 9,093 1280 700 650 598,3 1280 865 650 746,8 42 5 656,3 7,6 9,976 1115 680,8 485 610 1115 850,6 485 763,1 42 5 656,3 7,6 9,976 1280 702 650 630 1280 878,4 540 771,9 4 997,4 7,5 10,880 1170 729,1 540 640,6 1115 893,3 485 800,7 44 1,130 7,5 10,880 1170 729,1 540 647,3 1170 912,7 540 809,7 46 4 847,9 7,3 11,824 1170 765,2 540 670,1 1170 950,1 540 80,5													
4 875,1 7,6 9,976 1115 680,8 485 610 1115 850,6 485 763,1 42 5 656,3 7,6 9,976 1170 691,1 540 617,5 1170 878,4 540 771,9 8 437,6 7,6 9,976 1280 702 650 630 1280 899,8 650 789,4 44 997,4 7,5 10,880 1115 710,1 485 640,6 1115 893,3 485 800,6 44 997,4 7,5 10,880 1170 729,1 540 647,3 1170 912,7 540 899,8 650 827,9 4 1,130 7,3 11,824 1170 765,2 540 697,1 115 929,9 485 850,9 46 4 847,9 7,3 11,824 1170 765,2 540 697,1 1115 983,4 485 9	40												
42 875,1 7,6 9.976 1115 680,8 485 610 1115 850,6 485 763,1 5 656,3 7,6 9.976 1170 691,1 540 617,5 1170 878,4 540 771,9 8 437,6 7,6 9.976 1280 702 650 630 130 1280 898,8 650 789,4 4 997,4 7,5 10.880 1170 720,1 540 647,3 1170 912,7 540 809,7 8 498,7 7,5 10.880 1170 729,1 540 647,3 1170 912,7 540 809,7 4 1.130 7,3 11.824 1115 743,3 485 669,7 1115 929,9 485 809,6 4 1.330 7,3 11.824 1170 765,2 540 670,1 1170 950,1 540 860,5 6 565													
42 5 656,3 7,6 9,976 1170 691,1 540 617,5 1170 878,4 540 771,9 4 437,6 7,6 9,976 1280 702 650 630 1280 899,8 650 789,4 44 997,4 7,5 10,880 1170 729,1 540 647,3 1170 912,7 540 809,7 8 498,7 7,5 10,880 1280 740,8 650 662,3 1280 936,4 650 827,9 46 4 847,9 7,3 11,824 1170 765,2 540 670,1 1170 950,1 540 860,5 6 565,3 7,3 11,824 1170 765,2 540 670,1 1170 950,1 540 860,5 48 4 958,4 7,2 12,828 1175 786,4 485 763,3 1115 983 485 954,1		4			9.976								
44 997,4 7,5 10.880 1115 710,1 485 640,6 1115 893,3 485 800,6 5 748,1 7,5 10.880 1170 729,1 540 647,3 1170 912,7 540 809,7 4 1.130 7,3 11.824 1115 743,3 485 669,7 1115 929,9 485 850,9 46 4 847,9 7,3 11.824 1120 765,2 540 670,1 1170 950,1 540 860,5 6 565,3 7,3 11.824 1120 765,2 540 670,1 1170 950,1 540 860,5 4 847,9 7,2 12.828 1115 786,4 485 763,3 1115 983 485 954,1 4 958,4 7,2 12.828 1170 808,4 540 771,3 1170 10.10 540 845,4 50	42	5			9.976	1170		540	617,5	1170		540	
44 5 748,1 mm 7,5 mm 10.880 lags 1170 lags 729,1 mm 540 lags 647,3 lags 1170 lags 912,7 mm 540 lags 809,7 mm 4 498,7 mm 7,5 mm 10.880 lags 1280 lags 740,8 lags 650 lags 662,3 lags 1280 lags 936,4 lags 650 lags 827,9 lags 485 lags 850,9 lags 485 lags 850,9 lags 485 lags 660,7 lags 11170 lags 975 lags 485 lags 850,9 lags 486,0 lags 487,9 lags 485 lags 487,0 lags 486,0 lags 487,9 lags 485 lags 487,0 lags 486,0 lags 486,0 lags 487,9 lags 487,0 lags 487,0 lags 486 lags 485 lags 760,1 lags 775 lags 486 lags 485 lags 760,1 lags 775 lags 486 lags 485 lags 760,1 lags 485 lags 763,3 lags 11170 lags 975 lags 485 lags 975 lags 485 lags 964 lags 485 lags 763,3 lags 11170 lags 485 lags 763,3 lags 11170 lags 485 lags 763,3 lags 11170				7,6	9.976	1280	702	650	630		899,8	650	789,4
8 498,7 7,5 10.880 1280 740,8 650 662,3 1280 936,4 650 827,9 4 1,130 7,3 11,824 1115 743,3 485 669,7 1115 929,9 485 850,9 4 847,9 7,3 11,824 1170 765,2 540 670,1 1170 950,1 540 860,5 6 565,3 7,3 11,824 1280 779,2 650 679,7 1280 975 650 849,6 3 1,278 7,2 12,828 1170 808,4 540 771,3 1170 10.10 540 964 48 4 958,4 7,2 12,828 1170 808,4 540 771,3 1170 10.10 540 964 6 639 7,2 12,828 1280 819,1 650 787,9 1280 1.036 650 984,4 50 4 </th <th></th> <th></th> <th>997,4</th> <th></th> <th></th> <th>1115</th> <th></th> <th>485</th> <th>640,6</th> <th></th> <th></th> <th>485</th> <th></th>			997,4			1115		485	640,6			485	
46 4 1.130 7,3 11.824 1115 743,3 485 669,7 1115 929,9 485 850,9 46 4 847,9 7,3 11.824 1170 765,2 540 670,1 1170 950,1 540 860,5 5 565,3 7,3 11.824 1280 779,2 650 670,7 1280 975 650 849,6 3 1.278 7,2 12.828 1115 786,4 485 763,3 1115 983 485 954,1 48 4 958,4 7,2 12.828 1170 808,4 540 771,3 1170 1.010 540 964 6 639 7,2 12.828 1280 819,1 650 787,9 1280 1.036 650 984 50 4 1.083 7 13.914 1220 853,2 540 797,8 1220 1.079 540 996,6 <th>44</th> <th></th>	44												
46 4 847,9 7,3 11.824 1170 765,2 540 670,1 1170 950,1 540 860,5 6 565,3 7,3 11.824 1280 779,2 650 679,7 1280 975 650 849,6 48 4 958,4 7,2 12.828 1115 786,4 485 763,3 1115 983 485 954,1 6 639 7,2 12.828 1170 808,4 540 771,3 1170 1.010 540 964 6 639 7,2 12.828 1280 819,1 650 787,9 1280 1.036 650 984 50 4 1.083 7 13.914 1165 831,5 485 788,9 1165 1.065 485 985,4 50 4 1.083 7 13.914 1330 877,7 650 814,2 1330 1.110 650 1.010													
48 6 565,3 7,3 11.824 1280 779,2 650 679,7 1280 975 650 849,6 48 4 958,4 7,2 12.828 1115 786,4 485 763,3 1115 983 485 954,1 6 958,4 7,2 12.828 1115 786,4 485 763,3 1115 983 485 954,1 6 639 7,2 12.828 1105 808,4 540 771,3 1170 1010 540 964 6 639 7,2 12.828 1280 819,1 650 787,9 1280 1.036 650 984 50 4 1.083 7 13.914 1120 853,2 540 797,8 1220 1.079 540 996,6 6 722 7 13.914 1330 87,7 650 814,2 1330 1.110 650 1.089 <	4.1												
48 3 1.278 7,2 12.828 1115 786,4 485 763,3 1115 983 485 954,1 4 958,4 7,2 12.828 1170 808,4 540 771,3 1170 1.010 540 964 6 639 7,2 12.828 1280 819,1 650 787,9 1280 1.036 650 984 50 4 1.083 7 13.914 1165 831,5 485 788,9 1165 1.065 485 985,4 50 4 1.083 7 13.914 1320 853,2 540 797,8 1220 1.079 540 996,6 6 722 7 13.914 1330 877,7 650 814,2 1330 1.110 650 1.018 52 6 1.040 8,9 15.000 1220 911,1 540 838,6 1220 1.15 540 806,6	46										1		
48 4 958,4 7,2 12.828 1170 808,4 540 771,3 1170 1.010 540 964 6 639 7,2 12.828 1280 819,1 650 787,9 1280 1.036 650 984 50 4 1.083 7 13.914 1165 831,5 485 788,9 1165 1.065 485 985,4 6 722 7 13.914 1220 853,2 540 797,8 1220 1.079 540 996,6 6 722 7 13.914 1330 877,7 650 814,2 1330 1.110 650 1.018 52 6 1.040 8,9 15.000 1165 831,4 485 818,4 1165 1.066 485 1.063 54 1.546 8,8 16.128 1165 937,1 485 864,4 1165 1.231 540 1.189													
6 639 7,2 12.828 1280 819,1 650 787,9 1280 1.036 650 984 3 1.444 7 13.914 1165 831,5 485 788,9 1165 1.065 485 985,4 50 4 1.083 7 13.914 1220 853,2 540 797,8 1220 1.079 540 996,6 6 722 7 13.914 1330 877,7 650 814,2 1330 1.110 650 1.018 4 1.387 8,9 15.000 1165 831,4 485 818,4 1165 1.066 485 1.063 52 6 1.040 8,9 15.000 1220 911,1 540 838,6 1220 1.119 540 838,6 1220 1.119 540 838,6 1220 1.112 420 838,6 1220 1.112 420 836,6 1220 1.112 <t< th=""><th>48</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	48												
50 3 1.444 7 13.914 1165 831,5 485 788,9 1165 1.065 485 985,4 50 4 1.083 7 13.914 1220 853,2 540 797,8 1220 1.079 540 996,6 6 722 7 13.914 1330 877,7 650 814,2 1330 1.110 650 1.018 52 6 1.040 8,9 15.000 1220 911,1 540 838,6 1220 1.195 540 1.089 8 693,7 8,9 15.000 1330 925,1 650 860,6 1330 1.238 650 1.112 54 1.546 8,8 16.128 1165 937,1 485 864,4 1165 1.201 485 1.107 54 6 1.160 8,8 16.128 1220 901,3 540 927,4 1220 1.232 540 1.18	-10												
50 4 1.083 7 13.914 1220 853,2 540 797,8 1220 1.079 540 996,6 6 722 7 13.914 1330 877,7 650 814,2 1330 1.110 650 1.018 4 1.387 8,9 15.000 1165 831,4 485 818,4 1165 1.066 485 1.003 52 6 1.040 8,9 15.000 1220 911,1 540 838,6 1220 1.195 540 1.089 8 693,7 8,9 15.000 1330 925,1 650 860,6 1330 1.238 650 1.112 4 1.546 8,8 16.128 1165 937,1 485 864,4 1165 1.201 485 1.107 54 6 1.160 8,8 16.128 1330 1.001,6 650 988,6 1330 1.296 650 1.253													
6 722 7 13.914 1330 877,7 650 814,2 1330 1.110 650 1.018 4 1.387 8,9 15.000 1165 831,4 485 818,4 1165 1.066 485 1.063 52 6 1.040 8,9 15.000 1220 911,1 540 838,6 1220 1.195 540 1.089 8 693,7 8,9 15.000 1330 925,1 650 860,6 1330 1.238 650 1.112 54 1.546 8,8 16.128 1165 937,1 485 864,4 1165 1.201 485 1.107 54 6 1.160 8,8 16.128 1220 961,3 540 927,4 1220 1.232 540 1.189 54 773,2 8,8 16.128 1330 1.001,6 650 988,6 1330 1.296 650 1.257	50			7									
52 4 1.387 8,9 15.000 1165 831,4 485 818,4 1165 1.066 485 1.063 52 6 1.040 8,9 15.000 1220 911,1 540 838,6 1220 1.195 540 1.089 8 693,7 8,9 15.000 1330 925,1 650 860,6 1330 1.238 650 1.112 54 6 1.546 8,8 16.128 1165 937,1 485 864,4 1165 1.201 485 1.107 54 6 1.160 8,8 16.128 1220 961,3 540 927,4 1220 1.232 540 1.189 8 773,2 8,8 16.128 1330 1.001,6 650 988,6 1330 1.296 650 1.257 4 2.087 8,4 19.706 1265 1.034,7 485 1.191 1265 1.327 485										1	1		
52 6 1.040 8,9 15.000 1220 911,1 540 838,6 1220 1.195 540 1.089 8 693,7 8,9 15.000 1330 925,1 650 860,6 1330 1.238 650 1.112 4 1.546 8,8 16.128 1165 937,1 485 864,4 1165 1.201 485 1.107 54 6 1.160 8,8 16.128 1220 961,3 540 927,4 1220 1.232 540 1.189 8 773,2 8,8 16.128 1330 1.001,6 650 988,6 1330 1.296 650 1.257 4 2.087 8,4 19.706 1265 1.034,7 485 1.191 1265 1.327 485 1.333 50 5 1.566 8,4 19.706 1320 1.140,7 540 1.201 1320 1.471 540 1.352									818,4				
54 1.546 8,8 16.128 1165 937,1 485 864,4 1165 1.201 485 1.107 54 6 1.160 8,8 16.128 1220 961,3 540 927,4 1220 1.232 540 1.189 8 773,2 8,8 16.128 1330 1.001,6 650 988,6 1330 1.296 650 1.257 4 2.087 8,4 19.706 1265 1.034,7 485 1.191 1265 1.327 485 1.333 50 5 1.566 8,4 19.706 1320 1.140,7 540 1.201 1320 1.471 540 1.352 8 1.044 8,4 19.706 1430 1.185,6 650 1.295 1430 1.520 650 1.389 3 2.708 8,1 23.452 1265 1.055,1 485 1.399 1265 1.353 485 1.599 <	52		1.040	8,9				540					1.089
54 6 1.160 8,8 16.128 1220 961,3 540 927,4 1220 1.232 540 1.189 8 773,2 8,8 16.128 1330 1.001,6 650 988,6 1330 1.296 650 1.257 4 2.087 8,4 19.706 1265 1.034,7 485 1.191 1265 1.327 485 1.333 60 5 1.566 8,4 19.706 1320 1.140,7 540 1.201 1320 1.471 540 1.352 8 1.044 8,4 19.706 1430 1.185,6 650 1.295 1430 1.520 650 1.389 3 2.708 8,1 23.452 1265 1.055,1 485 1.399 1265 1.353 485 1.599 66 5 2.031 8,1 23.452 1320 1.112,2 540 1.415 1320 1.400 540 1.619													
60 8 773,2 8,8 16.128 1330 1.001,6 650 988,6 1330 1.296 650 1.257 4 2.087 8,4 19.706 1265 1.034,7 485 1.191 1265 1.327 485 1.333 5 1.566 8,4 19.706 1320 1.140,7 540 1.201 1320 1.471 540 1.352 8 1.044 8,4 19.706 1430 1.185,6 650 1.295 1430 1.520 650 1.389 3 2.708 8,1 23.452 1265 1.055,1 485 1.399 1265 1.353 485 1.599 66 5 2.031 8,1 23.452 1320 1.112,2 540 1.415 1320 1.400 540 1.619 7 1.354 8,1 23.452 1430 1.186,7 650 1.461 1430 1.484 650 1.661							l						
60 4 2.087 8,4 19.706 1265 1.034,7 485 1.191 1265 1.327 485 1.333 5 1.566 8,4 19.706 1320 1.140,7 540 1.201 1320 1.471 540 1.352 8 1.044 8,4 19.706 1430 1.185,6 650 1.295 1430 1.520 650 1.389 3 2.708 8,1 23.452 1265 1.055,1 485 1.399 1265 1.353 485 1.599 66 5 2.031 8,1 23.452 1320 1.112,2 540 1.415 1320 1.400 540 1.619 7 1.354 8,1 23.452 1430 1.186,7 650 1.461 1430 1.484 650 1.661 3 3.530 7,7 27.996 1265 1.201 485 1.574 1265 1.502 485 1.789	54												
60 5 1.566 8,4 19.706 1320 1.140,7 540 1.201 1320 1.471 540 1.352 8 1.044 8,4 19.706 1430 1.185,6 650 1.295 1430 1.520 650 1.389 3 2.708 8,1 23.452 1265 1.055,1 485 1.399 1265 1.353 485 1.599 66 5 2.031 8,1 23.452 1320 1.112,2 540 1.415 1320 1.400 540 1.619 7 1.354 8,1 23.452 1430 1.186,7 650 1.461 1430 1.484 650 1.661 3 3.530 7,7 27.996 1265 1.201 485 1.574 1265 1.502 485 1.789 72 4 2.647 7,7 27.996 1320 1.234,6 540 1.595 1320 1.583 540 1.812													
8 1.044 8,4 19.706 1430 1.185,6 650 1.295 1430 1.520 650 1.389 3 2.708 8,1 23.452 1265 1.055,1 485 1.399 1265 1.353 485 1.599 66 5 2.031 8,1 23.452 1320 1.112,2 540 1.415 1320 1.400 540 1.619 7 1.354 8,1 23.452 1430 1.186,7 650 1.461 1430 1.484 650 1.661 3 3.530 7,7 27.996 1265 1.201 485 1.574 1265 1.502 485 1.789 72 4 2.647 7,7 27.996 1320 1.234,6 540 1.595 1320 1.583 540 1.812	40	4									1		
3 2.708 8,1 23.452 1265 1.055,1 485 1.399 1265 1.353 485 1.599 5 2.031 8,1 23.452 1320 1.112,2 540 1.415 1320 1.400 540 1.619 7 1.354 8,1 23.452 1430 1.186,7 650 1.461 1430 1.484 650 1.661 3 3.530 7,7 27.996 1265 1.201 485 1.574 1265 1.502 485 1.789 72 4 2.647 7,7 27.996 1320 1.234,6 540 1.595 1320 1.583 540 1.812	00												
66 5 2.031 8,1 23.452 1320 1.112,2 540 1.415 1320 1.400 540 1.619 7 1.354 8,1 23.452 1430 1.186,7 650 1.461 1430 1.484 650 1.661 3 3.530 7,7 27.996 1265 1.201 485 1.574 1265 1.502 485 1.789 72 4 2.647 7,7 27.996 1320 1.234,6 540 1.595 1320 1.583 540 1.812													
7 1.354 8,1 23.452 1430 1.186,7 650 1.461 1430 1.484 650 1.661 3 3.530 7,7 27.996 1265 1.201 485 1.574 1265 1.502 485 1.789 72 4 2.647 7,7 27.996 1320 1.234,6 540 1.595 1320 1.583 540 1.812	66	5											
3 3.530 7,7 27.996 1265 1.201 485 1.574 1265 1.502 485 1.789 72 4 2.647 7,7 27.996 1320 1.234,6 540 1.595 1320 1.583 540 1.812	-												
72 4 2.647 7,7 27.996 1320 1.234,6 540 1.595 1320 1.583 540 1.812													
	72												
							,						

Tabela 14 JUNTA DE EXPANSÃO CARDÂNICA E DOBRADIÇA CLASSE 150 PSI

Dobradiça Solda

Dobradiça Flange

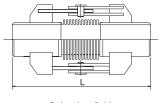
Cardânica Solda

Cardânica Flange

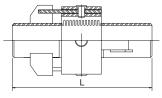
NOTAS EXPLICATIVAS

1. Os movimentos tabelados são considerados para uma vida útil de aproximadamente **2000 ciclos** segundo o método de cálculo do EJMA. Caso seja desejável uma maior vida útil, os movimentos tabelados devem ser multiplicados pelos seguintes fatores de redução:

Vida cíclica desejada (nº de ciclos)	5.000	10.000	25.000
Fator de redução dos movimentos tabelados	0,801	0,683	0,563


- 2. As informações descritas nestas tabelas são para temperaturas de 250°C. Para casos com temperatura entre 250°C e 400°C, multiplicar os valores das Constantes de Mola e da Pressão Máxima pelo fator de correção 0,87.
- 3. Máximo valor do movimento axial de extensão é de 50% do movimento axial tabelado para compressão.
- 4. Teste hidrostático para as juntas foi considerado: pressão teste = 1,5 x pressão projeto
- 5. A pressão máxima indicada, refere-se a menor das pressões que causam instabilidade no fole: <u>instabilidade de coluna</u> ou <u>instabilidade de plano</u> e não deve nunca ser ultrapassada, quer seja em operação ou em teste hidrostático. Este valor de pressão máximo não deve ser utilizado como pressão máxima de projeto.
- A furação e faceamento dos flanges segue o padrão ASME B16.5 em sua classe de pressão correspondente, exceto para juntas Classe 50 psi que seguem o padrão de furação segundo ASME B-16.5 150 psi
- 7. Os terminais para solda são fabricados com bisel de 37,5°, em ASTM-A-106 SCH 40 para tubulações de até DN 10" e em A36 ou equivalente para DNs superiores, nas espessuras de 12,7mm para DNs entre 12" e 14".
- 8. O material de fole considerado nas tabelas é ASTM A-240 TP 304 ou TP 321. Outros materiais, sob consulta.
- 9. Para pressões e/ou diâmetros não atendidos nesta tabela, preencher o formulário que se encontra no final do catálogo e encaminhá-lo para TEADIT JUNTAS.

						Dobi	adiça		Cardânica			
DN	Movimentos	Constantes de Mola	Pressão	Área	(Comprimento L	/ Peso Unitár	io	(Comprimento l	L / Peso Unitário	
DIN	Angular	Angular	Máxima	Efetiva	Ponta	Solda	Flo	ınge	Ponta	Solda	Flo	ınge
(pol)	(graus)	(kgf/m/graus)	(psi)	(cm ²)	(mm)	(kg)	(mm)	(kg)	(mm)	(kg)	(mm)	(kg)
	23	0,3	27,9	29	300	4,9	104	4,6	300	9	104	9,6
2	30	0,2	27,9	29	315	5	121	4,9	315	9,1	121	9,7
_	20	0,2	16	29	345	5,1	147	4,5	345	9,3	147	9,9
	18	0,6	27,2	43	300	5,7	112	6,1	300	11,9	112	13,1
2,1/2	25	0,4	27,2	43	315	6,1	130	6,3	315	12,5	130	13,2
	28	0,3	15,9	43	345	6,5	155	6,4	345	13	155	13,4
	14	1	27,3	64	330	7,2	112	7,7	330	14,7	112	15,4
3	19	0,8	27,3	64	345	8,8	130	8	345	14,8	130	15,5
	27	0,5	15,9	64	390	9,1	195	8,2	390	15	200	15,7
0 - 10	12	1,5	27,1	83	330	9,3	112	10	330	16,6	112	23,8
3,1/2	17	1,1	27,1	83	345	9,4	130	11	345	16,7	130	24
	29 15	0,7	17,2	83	400	9,7	195	11,6	400	17,2	195	24,1
4	20	1,8 1,4	24,6 24,6	105 105	400 420	11,2	130 185	11,2 12,1	400 420	23,4 23,9	130 195	26,5 26,9
4	30	0,9	16,3	105	460	11,4	245	13	460	23,9	245	20,9
	12	3,5	24,4	160	400	11,4	130	15	400	31,3	130	32,5
5	16	2,6	24,4	160	420	12	185	16,1	420	31,6	185	32,8
-	24	1,7	23,6	160	460	12,2	235	16,7	460	32,3	235	33,4
	10	6	24,4	226	415	26,3	136	27,8	415	50,1	136	50,6
6	13	4,5	24,4	226	440	27,3	195	28,1	440	50,5	195	51
	21	2,8	23,3	226	495	28,6	270	29	495	53,1	270	52,2
	11	10,8	24,7	382	555	30,3	160	34,7	555	63,1	160	63,2
8	17	7,2	24,7	382	595	32	205	35,5	595	64,7	225	64,5
	27	4,6	17,8	383	660	33,7	290	36,8	660	67,4	290	66,9
	9	21,3	24,4	592	605	39	200	37,6	605	80	200	81,5
10	13	14,2	24,4	592	645	40,1	245	38,2	645	80,2	245	82,7
	21	9,1	21,6	593 832	715 715	42,2 60	300 1 <i>7</i> 0	39,3	715 715	84,4	290 1 <i>7</i> 0	85,2
12	11	35,4 23,6	23,6 23,6	832	755	63,2	200	63,6 65,8	755	118,2 120,2	200	11 <i>7</i> ,9 119,9
12	17	15,1	21,8	833	820	66,7	315	67,4	820	125,5	315	122,9
	7	46,9	23,1	1,001	795	72,2	180	80	795	138,8	180	158,4
14	10	31,2	23,1	1,001	835	75,2	205	81,9	835	149	205	160,6
	16	20,1	21,3	1,003	900	78,8	320	84	900	155,5	310	164,7
	6	70	22	1,307	795	81,2	190	86,7	795	159,1	190	169,9
16	9	46,7	22	1,307	835	85,1	245	88,5	835	166,9	245	173
	14	30,3	20,4	1,308	900	88,1	288	90,7	900	172,2	288	177,4


Tabela 14 JUNTA DE EXPANSÃO CARDÂNICA E DOBRADIÇA CLASSE 150 PSI (cont.)

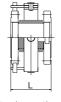

					Dobradiça					Card	lânica	
DN	Movimentos	Constantes de Mola	Pressão	Área	(Comprimento L	/ Peso Unitár	io	Comprimento L / Peso Unitário			
DIN	Angular	Angular	Máxima	Efetiva	Ponta	Solda	Flo	ınge	Ponta	Solda	Fla	nge
(pol)	(graus)	(kgf/m/graus)	(psi)	(cm ²)	(mm)	(kg)	(mm)	(kg)	(mm)	(kg)	(mm)	(kg)
	5	100,5	20,9	1.653	895	109,3	190	121,2	895	189,3	190	208,7
18	8	67	20,9	1.653	935	119,3	250	130,2	935	190,1	250	209
	12	42,4	19,3	1.654	1000	122,5	300	140,3	1000	204,1	300	217,2
	4	136,7	19,7	2.039	895	131,2	205	153,4	895	210,7	205	255,7
20	7	91,1	19,7	2.039	935	137,8	220	159,1	935	229,6	220	259,7
	11	58,1	18,1	2.042	1000	140,9	290	170,9	1000	234,8	290	264,9
	5	490,7	23,8	2.913	935	160,3	415	191,3	935	276,6	415	318,8
22	7	368,1	23,8	2.913	980	171,1	460	199,2	980	283,7	460	329,9
	10	245,4	23,8	2.913	1070	207,4	550	227,3	1070	298,7	550	345,6
	4	624,1	23,4	3.411	935	208	415	235,2	935	332,5	415	391,5
24	6	468,1	23,4	3.411	980	209,4	460	241,1	980	340,7	460	399,7
	9	312	23,4	3.411	1070	215,2	550	250,1	1070	357	550	416,1

Tabela 15 JUNTA DE EXPANSÃO CARDÂNICA E DOBRADIÇA CLASSE 300 PSI

Dobradiça Solda

Dobradiça Flange

Cardânica Solda

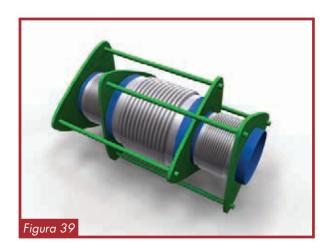
Cardânica Flange

NOTAS EXPLICATIVAS

1. Os movimentos tabelados são considerados para uma vida útil de aproximadamente **2000 ciclos** segundo o método de cálculo do EJMA. Caso seja desejável uma maior vida útil, os movimentos tabelados devem ser multiplicados pelos seguintes fatores de redução:

Vida cíclica desejada (nº de ciclos)	5.000	10.000	25.000
Fator de redução dos movimentos tabelados	0,801	0,683	0,563

- 2. As informações descritas nestas tabelas são para temperaturas de 250°C. Para casos com temperatura entre 250°C e 400°C, multiplicar os valores das Constantes de Mola e da Pressão Máxima pelo fator de correção 0,87.
- 3. Máximo valor do movimento axial de extensão é de 50% do movimento axial tabelado para compressão.
- 4. Teste hidrostático para as juntas foi considerado: pressão teste = 1,5 x pressão projeto
- 5. A pressão máxima indicada, refere-se a menor das pressões que causam instabilidade no fole: <u>instabilidade de coluna</u> ou <u>instabilidade de plano</u> e não deve nunca ser ultrapassada, quer seja em operação ou em teste hidrostático. Este valor de pressão máximo não deve ser utilizado como pressão máxima de projeto.
- A furação e faceamento dos flanges segue o padrão ASME B16.5 em sua classe de pressão correspondente, exceto para juntas Classe 50 psi que seguem o padrão de furação segundo ASME B-16.5 150 psi
- 7. Os terminais para solda são fabricados com bisel de 37,5°, em ASTM-A-106 SCH 40 para tubulações de até DN 10" e em A36 ou equivalente para DNs superiores, nas espessuras de 12,7mm para DNs entre 12" e 14".
- 8. O material de fole considerado nas tabelas é ASTM A-240 TP 304 ou TP 321. Outros materiais, sob consulta.
- 9. Para pressões e/ou diâmetros não atendidos nesta tabela, preencher o formulário que se encontra no final do catálogo e encaminhá-lo para TEADIT JUNTAS.


18 0,5 38,6 29,7 320 4,3 112 7,6 320 10,1 112 12 2 24 0,4 38,6 29,7 335 4,7 130 8 335 10,4 130 12 27 0,4 38,6 29,7 350 5 140 81 350 11 140 12 2,1 4 0,9 38,2 43,2 350 6 115 10,7 320 14,5 115 17 2,1,2 19 0,7 38,2 43,2 350 6,9 145 11,1 335 14,6 135 11,1 335 14,6 135 11,1 335 14,6 135 11,1 335 14,6 135 11,1 335 14,6 135 11 140 143 360 15,1 148 360 17,1 12 38,4 63,9 375 11,9 140 14,3 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Dobi</th> <th>adiça</th> <th></th> <th></th> <th>Car</th> <th>dânica</th> <th></th>							Dobi	adiça			Car	dânica	
	DNI	Movimentos	Constantes de Mola	Pressão	Área	(Comprimento L	/ Peso Unitá	rio	(Comprimento	L / Peso Unitá	rio
2 24 0,4 38,6 29,7 320 4,3 112 7,6 320 10,1 112 12.2 24 0,4 38,6 29,7 335 4,7 130 8 335 10,4 130 12 27 0,4 38,6 29,7 350 5 140 8,1 350 11 140 12 27 0,4 38,6 29,7 350 5 140 8,1 350 11 140 12 2,1.2 19 0,7 38,2 43,2 320 6 115 10,7 320 14,5 115 17 2,1.2 19 0,7 38,2 43,2 335 6,6 135 11,1 335 14,6 135 22 0,6 38,2 43,2 350 6,9 145 11,8 350 14,8 145 18 3 15 1,3 38,4 63,9 360 10,8 120 14 360 19,8 120 13 17 1,2 38,4 63,9 360 10,8 120 14 360 19,8 120 13 17 1,2 38,4 63,9 360 10,8 120 14 360 19,8 120 13 17 1,2 38,4 63,9 385 12,5 150 14,9 385 21 150 23 17 1,2 38,4 83 360 13,9 125 18,1 360 27,1 125 32 3,1.2 13 2 38,4 83 375 14,5 145 19,2 375 27,3 145 32 3,1.2 13 2 38,4 83 385 16,1 150 20,4 385 28,5 150 32 3,1.3 15 1,8 38,4 83 385 16,1 150 20,4 385 28,5 150 32 4 20 2,1 36,7 105,9 460 21,1 170 26,1 460 35,6 170 41 22 1,8 36,7 105,9 460 21,1 170 26,1 460 35,6 170 41 22 1,8 36,7 105,9 470 21,5 215 27,2 470 35,9 215 41 15 5,3 36,7 160,8 500 26,8 170 32,7 500 45,5 170 51 18 3,5 36,7 160,8 500 26,8 170 32,7 500 45,5 170 51 18 3,5 36,7 160,8 500 26,8 170 32,7 500 45,5 170 51 18 3,5 36,7 160,8 500 26,8 170 32,7 500 45,5 170 51 18 3,5 36,7 160,8 510 28,5 240 33,9 510 47,4 240 51 18 36,7 36,4 227,3 560 36,8 180 43,3 560 61,3 180 65 10 9 36,4 227,3 560 36,8 180 43,3 560 60,5 150 64 66 13 6,7 36,4 227,3 570 38,4 245 44,7 570 63,8 245 65 14 6 33,4 77,2 780 47,2 780 47,3 35,9 87,1 150 10 43,2 34,1 705,7 760 49,7 380 98 760 81,1 380 129 10 43,2 34,1 705,7 760 49,7 380 98 760 81,1 380 129 10 43,2 34,1 705,7 760 49,7 380 98 760 101,3 350 151 10 13 32,4 34,1 705,7 760 49,7 380 98 760 101,3 350 151 10 13 32,4 34,1 705,7 760 49,7 380 98 760 101,3 350 151 10 13 32,4 34,1 705,7 760 49,7 380 98 760 101,3 350 151 11 54 43,2 34,1 964,9 900 101,6 360 220,2 820 150,6 360 242 860 157 400 22 860 157 400 24 88 91,8 33,5 1.150 915 151,8 375 234,8 915 218,3 375 29,9	DIN	Angular	Angular	Máxima	Efetiva	Ponta	Solda	Flo	ange	Ponta	Solda	Flo	ınge
2 24 0,4 38,6 29,7 335 4,7 130 8 335 10,4 130 12 27 0,4 38,6 29,7 350 5 140 18,1 350 11 140 12 2,1.2 19 0,7 38,2 43,2 350 6,6 135 11,1 335 14,6 135 22 0,6 38,2 43,2 350 6,9 145 11,8 350 14,6 135 3 15 1,3 38,4 63,9 360 10,8 120 14 360 19,8 120 17 1,2 38,4 63,9 385 12,5 150 14,9 385 21 150 23 10 2,6 38,4 83 360 13,9 125 18,1 360 27,1 125 36 3,1.2 13 2 38,4 83 355	(pol)	(graus)	(kgf/m/graus)	(psi)	(cm ²)	(mm)	(kg)	(mm)	(kg)	(mm)	(kg)	(mm)	(kg)
27		18	0,5	38,6	29,7	320	4,3	112	7,6	320	10,1	112	12.41
2,1.2 14 0,9 38,2 43,2 320 6 115 10,7 320 14,5 115 17 2,1.2 19 0,7 38,2 43,2 335 6,6 135 11,1 335 14,6 135 11 1,7 38,4 63,9 360 10,8 120 14 360 19,8 120 2 3 15 1,3 38,4 63,9 375 11,9 140 14,3 375 20 140 23 10 2,6 38,4 83 360 13,9 125 150 14,9 385 21 150 23 3,1.2 13 2 38,4 83 365 14,5 145 14,9 385 21 150 2,2 3,1.2 13 2 38,4 83 365 14,5 145 149 385 22,7 3145 41 4	2	24	0,4	38,6	29,7	335	4,7	130	8	335	10,4	130	12,5
2,1.2 19 0,7 38,2 43,2 335 6,6 135 11,1 335 14,6 135 12 22 0,6 38,2 43,2 350 6,9 145 11,8 145 145 18 11 1,7 38,4 63,9 360 10,8 120 14 360 19,8 120 12 3 15 1,3 38,4 63,9 375 11,9 140 14,3 375 20 140 23 10 2,6 38,4 83 360 13,9 125 18,1 360 27,1 125 32 3,1.2 13 2 38,4 83 375 14,5 145 19,2 375 27,3 145 32 3,1.2 13 2 38,4 83 385 16,1 150 29,4 385 22,5 150 32 3,1.2 13 36,7		27	0,4	38,6	29,7	350	5	140	8,1	350	11	140	12,6
22		14	0,9		43,2	320	6	115	10,7	320	14,5	115	17,9
11	2,1.2	19	0,7	38,2	43,2	335	6,6	135	11,1	335	14,6	135	18
3 15 1,3 38,4 63,9 375 11,9 140 14,3 375 20 140 23 17 1,2 38,4 63,9 385 12,5 150 14,9 385 21 150 23 3,1.2 10 2,6 38,4 83 360 13,9 125 18,1 360 27,1 125 32 3,1.2 13 2 38,4 83 375 14,5 19,2 375 27,3 145 32 15 1,8 38,4 83 385 16,1 150 20,4 385 28,5 150 32 15 2,8 36,7 105,9 460 21,1 170 26,1 460 35,6 170 41 20 1,8 36,7 160,8 350 25,2 150 31,1 350 45,1 150 50 15 5,3 36,7 160,8 <th></th> <td>22</td> <td>0,6</td> <td>38,2</td> <td>43,2</td> <td>350</td> <td>6,9</td> <td>145</td> <td>11,8</td> <td>350</td> <td>14,8</td> <td>145</td> <td>18,1</td>		22	0,6	38,2	43,2	350	6,9	145	11,8	350	14,8	145	18,1
17								1				1	23
10	3	1					1 '	1				1	23,2
3,1.2 13 2 38,4 83 375 14,5 145 19,2 375 27,3 145 32 15 1,8 38,4 83 385 16,1 150 20,4 385 28,5 150 32 15 2,8 36,7 105,9 330 20,2 145 25,5 330 35,3 145 41 4 20 2,1 36,7 105,9 460 21,1 170 26,1 460 35,6 170 41 22 1,8 36,7 105,9 470 21,5 215 27,2 470 35,6 170 41 22 1,8 36,7 160,8 350 25,2 150 31,1 350 45,1 150 50 5 16 4 36,7 160,8 500 26,8 170 32,7 500 45,5 170 51 18 3,5 36,7 </th <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1 '</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>23,3</td>							1 '						23,3
15													32,1
4 15 2,8 36,7 105,9 330 20,2 145 25,5 330 35,3 145 41 20 2,1 36,7 105,9 460 21,1 170 26,1 460 35,6 170 41 22 1,8 36,7 105,9 470 21,5 215 27,2 470 35,9 215 41 5 16 4 36,7 160,8 350 25,2 150 31,1 350 45,1 150 50 18 3,5 36,7 160,8 500 26,8 170 32,7 500 45,5 170 51 18 3,5 36,7 160,8 510 28,5 240 33,9 510 47,4 240 51 10 9 36,4 227,3 350 35 150 41,4 350 60,5 150 64 11 6 36,4 227,3	3,1.2						1 '						32,3
4 20 2,1 36,7 105,9 460 21,1 170 26,1 460 35,6 170 41 22 1,8 36,7 105,9 470 21,5 215 27,2 470 35,9 215 41 15 5,3 36,7 160,8 350 25,2 150 31,1 350 45,1 150 50 5 16 4 36,7 160,8 500 26,8 170 32,7 500 45,5 170 51 18 3,5 36,7 160,8 510 28,5 240 33,9 510 47,4 240 51 10 9 36,4 227,3 350 35 150 41,4 350 60,5 150 64 13 6,7 36,4 227,3 560 36,8 180 43,3 560 61,3 180 65 14 6 36,4 227,3													32,3
22 1,8 36,7 105,9 470 21,5 215 27,2 470 35,9 215 41 15 5,3 36,7 160,8 350 25,2 150 31,1 350 45,1 150 50 16 4 36,7 160,8 500 26,8 170 32,7 500 45,5 170 51 18 3,5 36,7 160,8 510 28,5 240 33,9 510 47,4 240 51 10 9 36,4 227,3 350 35 150 41,4 350 60,5 150 64 13 6,7 36,4 227,3 560 36,8 180 43,3 560 61,3 180 65 14 6 36,4 227,3 570 38,4 245 44,7 570 63,8 245 65 12 24,4 35,3 477,2 720 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>I</th><th></th><th></th><th></th><th></th><th>41,3</th></t<>								I					41,3
5 15 5,3 36,7 160,8 350 25,2 150 31,1 350 45,1 150 50 16 4 36,7 160,8 500 26,8 170 32,7 500 45,5 170 51 18 3,5 36,7 160,8 510 28,5 240 33,9 510 47,4 240 51 10 9 36,4 227,3 350 35 150 41,4 350 60,5 150 64 6 13 6,7 36,4 227,3 560 36,8 180 43,3 560 61,3 180 65 14 6 36,4 227,3 570 38,4 245 44,7 570 63,8 245 65 12 24,4 35,3 477,2 680 45,5 305 93,7 680 78,1 305 125 8 16 18,3 35,3<	4												41,7
5 16 4 36,7 160,8 500 26,8 170 32,7 500 45,5 170 51 18 3,5 36,7 160,8 510 28,5 240 33,9 510 47,4 240 51 10 9 36,4 227,3 350 35 150 41,4 350 60,5 150 64 6 13 6,7 36,4 227,3 560 36,8 180 43,3 560 61,3 180 65 14 6 36,4 227,3 570 38,4 245 44,7 570 63,8 245 65 12 24,4 35,3 477,2 680 45,5 305 93,7 680 78,1 305 125 8 16 18,3 35,3 477,2 760 49,7 380 98 760 81,1 380 129 10 43,2 34,1<		1						l	1			1	41,9
6 18 3,5 36,7 160,8 510 28,5 240 33,9 510 47,4 240 51 10 9 36,4 227,3 350 35 150 41,4 350 60,5 150 64 13 6,7 36,4 227,3 560 36,8 180 43,3 560 61,3 180 65 14 6 36,4 227,3 570 38,4 245 44,7 570 63,8 245 65 12 24,4 35,3 477,2 680 45,5 305 93,7 680 78,1 305 125 8 16 18,3 35,3 477,2 720 47,1 340 96,4 720 79,6 340 127 20 14,6 35,3 477,2 760 49,7 380 98 760 81,1 380 129 10 43,2 34,1 <t< th=""><th>_</th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>50,6</td></t<>	_												50,6
6 10 9 36,4 227,3 350 35 150 41,4 350 60,5 150 64 13 6,7 36,4 227,3 560 36,8 180 43,3 560 61,3 180 65 14 6 36,4 227,3 570 38,4 245 44,7 570 63,8 245 65 12 24,4 35,3 477,2 680 45,5 305 93,7 680 78,1 305 125 20 14,6 35,3 477,2 760 49,7 380 98 760 81,1 380 129 10 43,2 34,1 705,7 760 65,8 350 129 760 101,3 350 151 10 13 32,4 34,1 705,7 800 69,9 395 130,2 800 107,3 395 154 17 25,9 34,1	5				,				1				51,1
6 13 6,7 36,4 227,3 560 36,8 180 43,3 560 61,3 180 65 14 6 36,4 227,3 570 38,4 245 44,7 570 63,8 245 65 12 24,4 35,3 477,2 680 45,5 305 93,7 680 78,1 305 125 20 14,6 35,3 477,2 760 49,7 380 98 760 81,1 380 129 10 43,2 34,1 705,7 760 65,8 350 129 760 101,3 350 151 10 13 32,4 34,1 705,7 760 65,8 350 129 760 101,3 350 151 17 25,9 34,1 705,7 800 69,9 395 130,2 800 107,3 395 154 12 11 54							1 '		1				51,3
14 6 36,4 227,3 570 38,4 245 44,7 570 63,8 245 65 12 24,4 35,3 477,2 680 45,5 305 93,7 680 78,1 305 125 8 16 18,3 35,3 477,2 720 47,1 340 96,4 720 79,6 340 127 20 14,6 35,3 477,2 760 49,7 380 98 760 81,1 380 129 10 43,2 34,1 705,7 760 65,8 350 129 760 101,3 350 151 10 13 32,4 34,1 705,7 800 69,9 395 130,2 800 107,3 395 154 17 25,9 34,1 705,7 840 75,2 430 135,5 840 115,6 430 156 8 72 34,1 964,9 860 105 400 220,2 820 150,6 360 <t< th=""><th>_</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>64,9</th></t<>	_												64,9
12 24,4 35,3 477,2 680 45,5 305 93,7 680 78,1 305 125 8 16 18,3 35,3 477,2 720 47,1 340 96,4 720 79,6 340 127 20 14,6 35,3 477,2 760 49,7 380 98 760 81,1 380 129 10 43,2 34,1 705,7 760 65,8 350 129 760 101,3 350 151 17 25,9 34,1 705,7 800 69,9 395 130,2 800 107,3 395 154 17 25,9 34,1 705,7 840 75,2 430 135,5 840 115,6 430 156 8 72 34,1 964,9 820 101,6 360 220,2 820 150,6 360 242 12 11 54 34,1 964,9 860 105 400 222 860 157 400 <	6	1							1				65,5
8 16 18,3 35,3 477,2 720 47,1 340 96,4 720 79,6 340 127 20 14,6 35,3 477,2 760 49,7 380 98 760 81,1 380 129 10 43,2 34,1 705,7 760 65,8 350 129 760 101,3 350 151 13 32,4 34,1 705,7 800 69,9 395 130,2 800 107,3 395 154 17 25,9 34,1 705,7 840 75,2 430 135,5 840 115,6 430 156 8 72 34,1 964,9 820 101,6 360 220,2 820 150,6 360 242 12 11 54 34,1 964,9 860 105 400 222 860 157 400 24 14 43,2 34,1 964,9 900 110,7 440 228 900 167,3 440 <				,			1 '	1	, ,			1	65,7
20 14,6 35,3 477,2 760 49,7 380 98 760 81,1 380 129 10 43,2 34,1 705,7 760 65,8 350 129 760 101,3 350 151 10 13 32,4 34,1 705,7 800 69,9 395 130,2 800 107,3 395 154 17 25,9 34,1 705,7 840 75,2 430 135,5 840 115,6 430 156 8 72 34,1 964,9 820 101,6 360 220,2 820 150,6 360 242 12 11 54 34,1 964,9 860 105 400 222 860 157 400 24 14 43,2 34,1 964,9 900 110,7 440 228 900 167,3 440 249 8 91,8 33,5 </th <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td>								1					
10 43,2 34,1 705,7 760 65,8 350 129 760 101,3 350 151 13 32,4 34,1 705,7 800 69,9 395 130,2 800 107,3 395 154 17 25,9 34,1 705,7 840 75,2 430 135,5 840 115,6 430 156 8 72 34,1 964,9 820 101,6 360 220,2 820 150,6 360 242 11 54 34,1 964,9 860 105 400 222 860 157 400 24 14 43,2 34,1 964,9 900 110,7 440 228 900 167,3 440 249 8 91,8 33,5 1.150 915 151,8 375 234,8 915 218,3 375 299	8							1					
10 13 32,4 34,1 705,7 800 69,9 395 130,2 800 107,3 395 154 17 25,9 34,1 705,7 840 75,2 430 135,5 840 115,6 430 156 8 72 34,1 964,9 820 101,6 360 220,2 820 150,6 360 242 11 54 34,1 964,9 860 105 400 222 860 157 400 24 14 43,2 34,1 964,9 900 110,7 440 228 900 167,3 440 249 8 91,8 33,5 1.150 915 151,8 375 234,8 915 218,3 375 299				,			1 '						
17	10	1						I	1				
12 18 72 34,1 964,9 820 101,6 360 220,2 820 150,6 360 242 11 54 34,1 964,9 860 105 400 222 860 157 400 242 14 43,2 34,1 964,9 900 110,7 440 228 900 167,3 440 249 8 91,8 33,5 1.150 915 151,8 375 234,8 915 218,3 375 299	10								1 '				
12 11 54 34,1 964,9 860 105 400 222 860 157 400 24 14 43,2 34,1 964,9 900 110,7 440 228 900 167,3 440 249 8 91,8 33,5 1.150 915 151,8 375 234,8 915 218,3 375 299												1	
14 43,2 34,1 964,9 900 110,7 440 228 900 167,3 440 249 8 91,8 33,5 1.150 915 151,8 375 234,8 915 218,3 375 299	12				,		1 '						242,6
8 91,8 33,5 1.150 915 151,8 375 234,8 915 218,3 375 299	14			,									249,2
				,	'		1 '						299,8
	14	10	68,9	33,5	1.150	960	160,4	420	247,8	960	229,2	420	303,3
	17						1 '		1 '				295,8

8.8. PRESSÃO BALANCEADA

As Juntas de Expansão de Pressão Balanceada são usadas mais freqüentemente em aplicações onde a força de pressão não pode ser suportada pela tubulação ou equipamento. A maior vantagem da Junta de Pressão Balanceada é a capacidade de absorver movimentos sem transmitir forças provenientes da pressão do sistema. Entretanto, a força de mola para defletir a junta não é eliminada, na realidade ela é aumentada, pois são necessários movimentar os três foles da junta. Como normalmente estas forças são de menor amplitude, resultam forças menores na tubulação.

8.8.1 AXIAL

Na Junta Axial de Pressão Balanceada (figura 39) o fole central possui uma área efetiva duas vezes maior que dos dois foles menores, compensando a força de pressão. Ligações por tirantes transmitem as forças entre os foles entre si, impedindo sua liberação para a tubulação.

8.8.2. COM DERIVAÇÃO

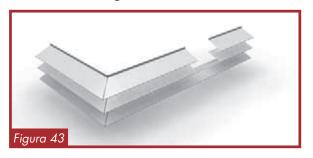
Na Junta de Pressão Balanceada com Derivação (figura 40) o fole no lado externo da curva é usado exclusivamente para compensar a força de pressão. Os movimentos são absorvidos pelos outros foles.

8.9 Pressurizada Externamente.

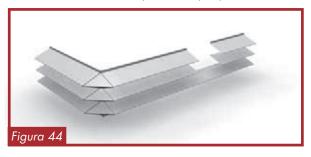
As Juntas de Expansão Pressurizadas Externamente são utilizadas para absorverem uma grande amplitude de movimento axial (além do permitido para juntas axiais e axiais duplas), minimizando o número total de juntas requeridas. Como a pressão do sistema atua externamente ao fole não apresentam o efeito de "Instabilidade de Coluna". São juntas de segurança intrínseca: resistem a falhas de ancoragens e golpes de aríete. Seu fole é auto-drenante (figura 41).

8.10 RETANGULARES

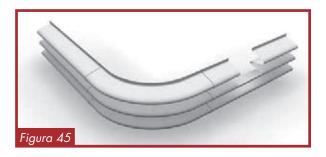
As Juntas de Expansão Retangulares são geralmente utilizadas em dutos de gases ou vapores, onde, devido a pressão, não é possível a utilização de juntas de foles não-metálicos — tipo Freeflex. A variável de maior importância para este tipo de junta é a forma construtiva de seus cantos Existem 4 modelos:


8.10.1 CÂMARA CORNER

É o modelo mais antigo e praticamente não é mais utilizado nas atuais juntas. O encontro de várias linhas de solda em seus cantos é sua característica mais problemática. Apresenta um grande consumo de material.


8.10.2 SINGLE MITER CORNER

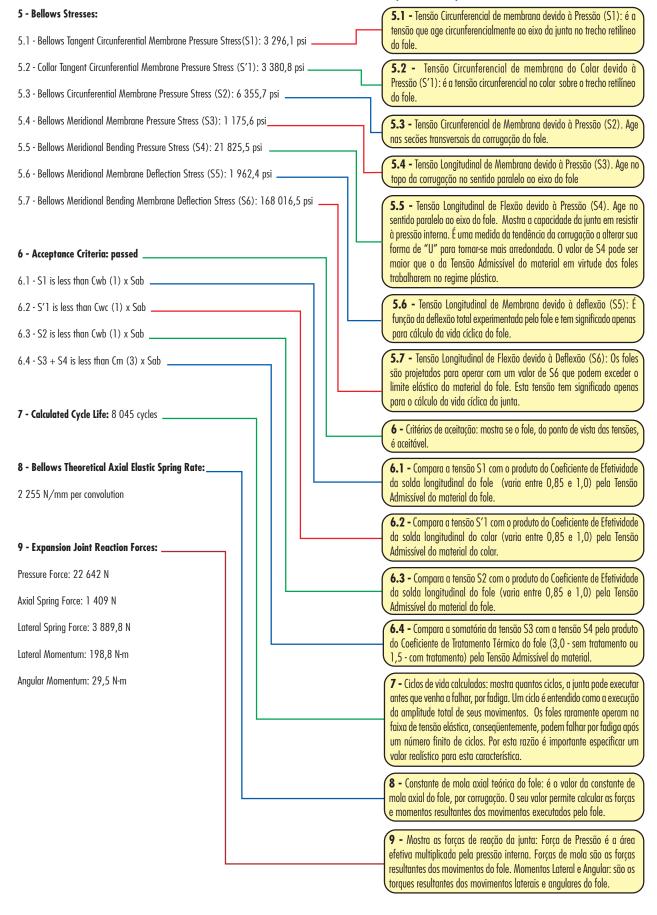
Apresenta seus cantos em ângulo de 90°. Devido a esta característica possui uma menor flexibilidade e uma maior probabilidade de fraturas de solda nesta região.


8.10.3 DOUBLE MITER CORNER

É uma evolução do modelo anterior. Seus cantos têm uma transição em 45° de modo a minimizar as tensões e aumentar sua flexibilidade total. É tido como uma boa opção de projeto.

8.10.4 ROUND CORNER

Seus cantos são formados a partir de semi-círculos, conseqüentemente, suas tensões são bastante reduzidas. Apresentam uma altura de corrugação maior do que os três modelos anteriores. É considerada uma boa opção de projeto.



9. MEMÓRIA DE CÁLCULO

Teadit Juntas possui Programa de Cálculo que, conhecendo as condições operacionais e os movimentos, permite determinar a performance da junta de expansão, estabelecendo a melhor solução para cada aplicação. Quando solicitado, a Teadit fornece Memória de Cálculo elaborada a partir das recomendações da norma EJMA "Standards of the Expansion Joints Manufacturers Association, Inc."

MEMÓRIA DE CÁLCULO 1 - Identifica o cliente, o número do desenho associado e o tipo de **Expansion Joint Data Sheet** junta. Neste caso, trata-se de uma junta de expansão axial simples. 1 - Application Identification: 2 - Condições de Operação: são os dados de entrada, sendo informados pelo cliente. A pressão é em escala manométrica e a temperatura é aquela Customer: NOME DO CLIENTE efetivamente existente no fole. Em juntas com isolamento térmico interno, a redução da temperatura em função do mesmo deve ser obrigatoriamente Drawing Number: D-23.234C rev.0 levado em consideração. Style: Single Axial Expansion Joint 3 - Os movimentos a serem absorvidos simultaneamente pela junta. 2 - Operating conditions: Temperature: 145 °C 4 - São os dados característicos de cada fole. Pressure: 6,0 bar 4.1 - Diâmetro interno do fole e diâmetro externo do topo da corrugação 3 - Movements: 4.2 - Número de lâminas e a espessura de cada lâmina. Axial Compression: 5,0 mm - Extension: 2,0 mm Lateral: 2,0 mm 4.3 - 0 "collar lenght" identifica um sobremetal colocado sobre o fole, Angular: 1,0° já em seu trecho reto que será soldado ao terminal, bem como a espessura considerada para o mesmo. Tem a função de diminuição da tensão S1. 4 - Bellows Data: **4.4** - Indica o número de corrugações do fole e o seu passo. 4.1 - Inside Diameter: 203,0 mm - Outside Diameter: 235,4 mm **4.5** - Mostra o valor da área efetiva, ou seja a considerada para cálculo 4.2 - Number of Plies: 1 - Thickness: 0,60 mm de força de pressão. É função do diâmetro médio. 4.3 - Collar length: 15,0 mm - Thickness: 2,00 mm 4.6 - Identifica o material do fole. 4.4 - Number of Convolutions: 8 - Pitch: 13,40 mm -4.5 - Effective Area: 377,37 sqcm **4.7** - Mostra as tensões admissíveis a temperatura ambiente e a Tensão 4.6 - Material: ASTM A240 Tp 304 - Design Allowable Stresses: Admissível à temperatura de operação. 4.7 - At Room Temperature: 20 000 psi - At Operating Temperature: 15 119 psi _ 4.8 - Mostra os valores de "Instabilidade de Coluna". 4.8 - Limiting Column Instability Design Pressure: 15,1 bar _ 4.9 - Limiting Inplane Instability Design Pressure: 10,2 bar _ 4.9 - Mostra os valores de "Instabilidade de Plano".

MEMÓRIA DE CÁLCULO (CONT.)

Teadit Expansion Joint Calculation Program - Serial No. 6.01 Calculation per Expansion Joints Manufactures Association - EJMA - 8th Edition 2003

10. MATERIAIS

omo os fluidos e condições operacionais variam muito, é muito difícil fazer recomendações específicas para os materiais das juntas de expansão, sem uma análise de cada caso. Especial atenção deve ser dada à possibilidade de corrosão sob tensão e intergranular, características dos aços inoxidáveis austeníticos. Para uma maior segurança na especificação dos materiais dos foles, a experiência do usuário deve ser levada em consideração. Recomenda-se fortemente que a Teadit seja consultada em casos especiais.

A seguir, listamos as ligas mais usadas na fabricação das juntas de expansão:

Aço inoxidável AISI 304: é o material mais usado em razão da sua excelente resistência à corrosão, preço e disponibilidade no mercado.

Aço inoxidável AISI 304L: tem as mesmas características do AISI 304. Entretanto, seu teor de Carbono está limitado a 0.03% reduzindo a suscetibilidade à corrosão sob tensão e corrosão intergranular.

Aço inoxidável AISI 316: é o material mais usado para aplicações onde é necessária uma boa resistência à corrosão.

Aço inoxidável AISI 316L: tem as mesmas características do AISI 316 com teor de Carbono limitado a 0.03%, que inibe a corrosão sob tensão e corrosão intergranular.

Aço inoxidável AISI 321: liga estabilizada com Titânio para reduzir a corrosão intergranular.

Aço Inoxidável AISI 310: liga com eleva-

dos teores de Níquel (19 a 22%) e cromo (26%) o que confere ao material excelente resistência à corrosão a temperaturas elevadas com presença de Enxofre.

Inconel 625 LCF: liga à base de Níquel (70%) e Cromo (15%) com Ferro (7%) tem excelente resistência à temperaturas, tanto criogênicas quanto elevadas. Liga resistente a uma larga escala de ambientes severamente corrosivos e especialmente resistente a corrosão pitting e sob-tensão. O LCF (low cycle fatigue) é particularmente indicado para confecção de foles.

Incoloy 800H: Uma liga do niquel-ferro-cromo com boa tensão e resistência excelente à oxidação e carbonetação em atmosferas a altas temperaturas. Resiste também a corrosão por muitos ambientes aquosos. A liga mantem uma estável estrutura austenítica, durante a exposição prolongada às altas temperaturas.

Incoloy 825: Uma liga de Niquel-ferro-cromo com adições do molibdênio e cobre. Tem excelente resistência aos ácidos redutores ou oxidantes em geral, à corrosão sob tensão, e ao ataque localizado tal como a corrosão por pitting. A liga é especialmente resistente aos ácidos sulfúricos e fosfóricos.

Hasteloy C-22: Ótima resistência à corrosão localizada e excelente resistência a corrosão de sob tensão. Suas aplicações incluem o anidrido acético, ácido acético, cloro, misturas ácidas complexas, scrubbers de fornalhas do HF, sistemas de scrubbers incineratores, reprocessamento de combustível nuclear, produção de ácido fosfórico, etc.

Temperatura Máxin	na Recomendada
Material	Temperatura (°C)
AISI 304	450
AISI 304L	450
AISI 316	450
AISI 316L	450
AISI 321	500
AISI 310	560
INCONEL 625 LCF	650
INCOLOY 800H	650
INCOLOY 825	600
HASTELOY C-22	560

11. MEIO AMBIENTE

s condições do meio ambiente podem afetar o desempenho da junta de expansão, especialmente se houver a possibilidade de corrosão causada por agente externo. Neste caso a escolha dos materiais da junta também deve levar em consideração esta

variável. A existência de pó ou poeira em suspensão pode provocar o acúmulo destes materiais entre as corrugações, reduzindo a capacidade de absorção de movimentos da junta. Nestes casos, o fole deve ser adequadamente protegido.

12. Ensaios

ependendo das exigências de projeto, um ou mais ensaios não-destrutivos podem ser realizados para assegurar que a Junta de Expansão atende aos requisitos estabelecidos nas especificações. Normalmente, todas as Juntas de Expansão Teadit são submetidas a pelo menos dois ensaios: Líquido Penetrante e Teste de Pressão (Hidrostático ou Pneumático).

12.1 ENSAIO COM LÍQUIDO PENETRANTE

Tem o objetivo de verificar defeitos superficiais. O ensaio é realizado limpando-se a superfície e em seguida aplicando um líquido de baixa tensão superficial, que é o "líquido penetrante". Na sua composição é adicionado um pó fluorescente ou pó revelador. Após a sua aplicação a superfície é novamente limpa e seca. Em seguida, aplica-se um revelador, produto à base de talco. Havendo trincas ou poros o líquido penetrante retido nestas descontinuidades gera indicações coloridas.

A principal aplicação do ensaio com líquido penetrante nas juntas de expansão é a verificação da existência de trincas ou poros nas soldas.

12.2. TESTE DE PRESSÃO

O objetivo do teste de pressão é assegurar a estanqueidade, resistência e estabilidade da junta de expansão, quando submetida à pressão. O teste de pressão pode ser hidrostático ou

pneumático. As juntas previstas neste catálogo são testadas com água a 1.5 vezes a pressão de projeto ou com ar comprimido a 1.25 vezes a pressão de projeto. Durante o teste é verificado se a peça não apresenta vazamentos, empenamentos ou flambagem que possam comprometer a sua integridade estrutural.

12.3 ENSAIO RADIOGRÁFICO

O ensaio radiográfico objetiva verificar se não existem defeitos internos nos materiais da junta de expansão. O ensaio é baseado na capacidade dos raios "X" e "Gama" em penetrar e atravessar materiais. A radiação que penetra é parcialmente absorvida pelo material ensaiado. Havendo descontinuidades, a absorção é diferente, resultando em variações de tonalidade no filme radiográfico. Analisando estas variações de tonalidade é possível detectar falhas de solda, incrustações, vazios e outros defeitos internos.

12.4 OUTROS ENSAIOS

Dependendo das exigências de projeto, outros ensaios destrutivos e não-destrutivos podem ser realizados, quando especificamente solicitados pelo cliente. Estes ensaios podem ser: exame com partículas magnéticas, ultra-som, gases halogênicos, espectrômetro de massa, resistência à fadiga, à flambagem e de ruptura do fole.

13. Transporte e Manuseio

de responsabilidade de todo fabricante de juntas de expansão assegurar, no projeto e fabricação, que o usuário final tenha um produto de total confiança. O instalador e o usuário devem ter responsabilidade ao manusear, armazenar, instalar e aplicar as juntas de expansão de maneira a não prejudicar a sua qualidade intrínseca.

13.1. DISPOSITIVOS DE TRANSPORTE

As juntas são fornecidas de modo a manter a correta dimensão face-a-face das juntas de expansão durante o seu transporte e instalação. Isto, usualmente, consiste de travas de transporte soldadas aos flanges ou aos terminais. Arruelas ou calços de madeira colocados entre os anéis equalizadores são também dispositivos adotados para esta finalidade. Não se deve remover estes dispositivos até que todas as juntas de expansão, ancoragens e guias do sistema tenham sido instalados. Os dispositivos para transporte são, usualmente, pintadas na cor amarela ou recebem outra marcação especial que ajude o instalador a distingui-las.

13.2. ARMAZENAGEM

Algumas condições externas à armazenagem podem ser prejudiciais e onde houver possibilidade de ocorrência devem ser evitadas; preferencialmente a armazenagem deve ser em um local ventilado e seco. Cuidados especiais devem ser tomados para evitar-se danos mecânicos tais como os causados por empilhamento, impactos ou quedas. Por estas razões é fortemente sugerido que capas de proteção externas aos foles sejam especificadas para todas as juntas de expansão.

13.3 . INSTRUÇÕES DE INSTALAÇÃO

As juntas de expansão são despachadas com documentação que possibilita ao instalador ter as instruções específicas ou particulares para cada tipo de juntas de expansão. Esta documentação deve ficar junto às juntas de expansão até sua completa instalação.

14. Instalação

untas de expansão de foles metálicos são projetadas para absorver uma determinada quantidade de movimentos de expansão por flexão de suas finas paredes nos foles. Se cuidados específicos não forem tomados durante a instalação das juntas de expansão, sua vida cíclica e sua resistência à pressão, podem ser reduzidas, resultando numa prematura falha ou dano ao sistema de tubulações. É importante lembrar que a juntas de expansão são projetadas para absorver movimentos por flexão. Entretanto, os foles devem ser suficientemente espessos para resistir à pressão e ao mesmo tempo finos o bastante para proporcionar a flexibilidade requerida. Um projeto otimizado, sempre irá requerer um fole de material mais fino que qualquer outro componente da tubulação na qual ele será

instalado. O instalador deve reconhecer esta relativa fragilidade do fole e tomar todas as medidas adequadas de proteção durante a instalação. É altamente recomendado que uma proteção externa seja especificada para o fole de cada junta de expansão. O pequeno custo adicional desta cobertura é facilmente justificável quando comparado ao custo de reposição de um elemento flexível (fole) danificado. Com um razoável cuidado durante a armazenagem, manuseio e instalação, o usuário estará assegurando a confiabilidade do projeto e da fabricação de uma junta de expansão.

É importante observar todos os pontos do **Capítulo 15 - Recomendações de Instalação** para assegurar que a mesma seja adequadamente realizada.

15. Recomendações de Instalação

As seguintes recomendações são imprescindíveis para evitar os erros mais comuns que ocorrem durante a instalação. Quando em dúvida sobre o uso deste procedimento de instalação, contate a Teadit para obter instruções antes de executar a instalação.

15.1 PONTOS IMPORTANTES

- Inspecione eventuais danos ocorridos durante o transporte, tais como: entalhes, quebras de estruturas, marcas de água na embalagem etc...
- Armazene a junta de expansão em um local limpo e seco, onde não exista a possibilidade de exposição da junta a tráfego pesado ou danos do meio ambiente.
- Utilize-se somente de olhais próprios para o içamento (quando fornecidos). Não utilize ganchos ou os dispositivos de trava para içamento da junta. Não utilize correntes ou qualquer outro dispositivo para içamento diretamente por sobre os foles ou proteção dos mesmos.
- É importante que a junta de espansão seja instalada no comprimento especificado pelo fabricante. Ela não deve ser em hipótese alguma distendida ou comprimida de maneira a compensar deficiências dimensionais no comprimento de instalação ou corrigir eventuais deslinhamentos da tubulação pois este procedimento pode causar uma sobre-tensão nos foles e reduzir sensivelmente sua vida útil. Adapte sempre a tubulação e/ou dutos à junta, nunca o contrário.
- Deixe livre um flange na tubulação adjacente à junta, quando possível, até que a junta esteja colocada em sua posição final de montagem.
 Faça, então, os ajustes necessários no sistema antes de sua soldagem final à tubulação.
- Instale a junta sempre na correta posição do sentido de fluxo (indicado por setas de fluxo colocadas na parte externa da mesma).
- No caso da utilização de guias de fluxo independentes - do tipo Van Stone - certifiquese de instalá-las no correto sentido de fluxo, bem como da instalação das duas juntas de vedação entre a guia e o flange.
- No caso de guias telescópicas instalar a guia de menor diâmetro no sentido do fluxo.
- Deve-se evitar entalhes, respingos de solda ou

- a possibilidade de alojamento de corpos estranhos que possam interferir na correta flexibilidade dos foles. Remova qualquer objeto estranho tenha se alojado entre as corrugações.
- Não permita que respingos de solda ou fagulhas provenientes de trabalhos com lixadeiras sejam projetados por sobre a superfície dos foles.
- Não utilize produtos de limpeza que contenham cloretos em sua composição, não utilize palhas ou escovas de aço carbono para limpeza dos foles.
- Não permita que a junta caia ou seja abalroada.
- Não remova as trava e dispositivos de transporte (identificados pela cor amarela) até que a instalação esteja completa. Remova as travas e dispositivos para transporte (identificadas pela cor amarela) após a completa instalação da junta e antes de qualquer execução de testes de pressão do sistema. Não utilize os dispositivos de transporte (identificados pela cor amarela) para contenção da força de pressão durante a execução do teste hidrostático. Eles não foram projetados para esta finalidade.
- Não remova o acabamento de proteção (verniz) de superfícies para soldagem até que a junta esteja em posição para montagem.
- Não force ou produza torção na extremidade da junta para alinhar o circulo de furação dos flanges. Os foles não foram projetados para admitir torcão.
- Não proceda ao teste hidrostático antes da correta instalação de todas as guias e ancoragens, nem se existirem elementos de isolação térmica instalados no interior dos foles ou se a junta for do tipo refratada internamente.
- Nunca exceda o valor indicado pelo fabricante para o teste de pressão.
- Consulte sempre o guia de espaçamento de guias e ancoragens contido no EJMA seções B-1.3 e B-1.4 ou Tabela 1 deste catálogo.

IMPORTANTE:

PARA SE ALCANÇAR A PERFORMANCE DESEJADA DAS JUNTAS DE EXPANSÃO, A INSTALAÇÃO DEVERÁ SER REALIZADA SEGUINDO-SE ESTES CRITÉRIOS.

16. Inspeções

sta seção foi preparada com o intuito de melhor informar o usuário sobre fatores que muitos anos de experiência como fabricante, se mostraram essenciais para uma instalação de sucesso e boa performance dos sistemas contendo juntas de expansão.

16.1 INSPEÇÃO OU TESTE DE PRESSÃO ANTES DO START-UP

As Juntas de Expansão são usualmente consideradas como itens que não permitem reparo e geralmente não falham quando são seguidos os procedimentos de instalação e manutenção corretos. Entretanto, imediatamente após a instalação estar completa, uma cuidadosa inspeção visual deve ser feita em todo o sistema de forma a assegura-se que não exista qualquer evidência de dano, com ênfase particular nos seguintes pontos:

- 1. Estão as ancoragens, guias e suportações instaladas de acordo com o projeto original do sistema?
- 2. A junta de expansão está instalada no exato local para o qual foi projetada?
- 3. A junta de expansão está corretamente instalada no que diz respeito ao sentido de fluxo?
- 4. Todos os dispositivos de transporte (identificados pela cor amarela) foram retirados?
- 5. Caso o sistema tenha sido projetado para fluídos gasosos e esteja previsto um ensaio hidrostático, foram previstas suportações adicionais para o peso extra do fluído de teste nas tubulações e na junta de expansão? Atenção: alguma quantidade de água pode ficar retida nas partes baixas das corrugações depois do teste e é de fundamental importância que toda ela seja retirada.
- 6. Todas as guias e suportações, bem como a junta de expansão, estão livres para permitir sua movimentação após o start-up do sistema ?
- 7. Alguma junta de expansão (ou componente) foi danificado durante o transporte e/ou instalação?
- 8. Existe alguma junta de expansão cujo projeto original não previa pré-tensionamento -

desalinhada? Atenção: isto pode ser determinado pela medição do comprimento total, pela inspeção da geometria da corrugação ou pela checagem das tolerâncias nos pontos críticos da junta e do sistema

9. Os foles e demais componentes móveis da junta (tais como: tirantes limitadores, sistemas pantográficos, etc.) estão livres e liberados de objetos estranhos ?

16.2 INSPEÇÃO DURANTE E IMEDIATAMENTE APÓS O TESTE DE PRESSÃO

ATENÇÃO: Cuidado extremo deve ser tomado durante a inspeção de qualquer equipamento ou sistema pressurizado!

Uma inspeção visual do sistema deve, obrigatoriamente, incluir:

- 1. Evidências de vazamentos e/ou perdas de pressão.
- 2. Distorções ou rupturas nas ancoragens, guias, na estrutura da juntas de expansão, nos foles e de qualquer outro componente do sistema.
- 3. Qualquer movimentação imprevista do sistema de tubulações devido à pressão.
 - 4. Evidências de instabilidade nos foles.
- 5. As guias, juntas de expansão e outras partes móveis do sistema devem ser inspecionados quanto a evidências de travamentos.
- 6. Qualquer anormalidade ou dano deve ser acompanhado e revisado por um profissional habilitado para tal função.

16.3 INSPEÇÕES PERIÓDICAS EM SERVIÇO

ATENÇÃO: Extremo cuidado deve ser tomado durante a inspeção de qualquer equipamento ou sistema pressurizado!

1. Imediatamente após a entrada em operação do sistema, uma inspeção visual deve ser conduzida para certificar-se que as dilatações térmicas estão sendo absorvidas pelas juntas de expansão da forma como foram projetadas.

- 2. Os foles devem ser observados quanto a vibrações inesperadas ou imprevistas.
- 3. Um programa de inspeção deve ser planejado e conduzido durante toda a vida útil do sistema. A freqüência destas inspeções deve ser determinada pelas características de serviço e demais condições do meio ambiente envolvidas. Tais inspeções podem detectar problemas óbvios, como corrosão externa, perda ou espanamento dos estojos nos anéis equalizadores, deterioração de ancoragens, guias e outros dispositivos.

4. Na eventualidade de qualquer inspeção revelar evidências de mal-funcionamento, dano ou deterioração, uma pessoa habilitada para tal deve proceder a uma detalhada análise da situação e tomar as providências devidas. Adicionalmente, qualquer alteração nas condições de operação, tais como pressão, temperatura, deslocamentos, fluxo, velocidade, etc, que possa afetar de forma prejudicial às juntas de expansão, deve ser reportada e analisada pelo fabricante das juntas.

17. Causas de Falhas

untas de expansão projetadas, construídas e instaladas corretamente apresentam desempenho satisfatório. Entretanto, situações não consideradas no projeto ou instalação inadequada podem provocar uma falha prematura. As causas mais frequentes são:

- danos de transporte e manuseio;
- proteção inadequada contra danos provocados pelo meio ambiente durante a armazenagem;
- danos provocados durante a instalação, tais como respingos de solda ou batidas no fole;
- instalação da junta com o sentido de fluxo invertido;
- instalação da junta em local diferente daquele previsto no projeto;
- alteração do comprimento face-a-face para compensar desalinhamentos na tubulação não previstos no projeto;
- não-remoção das travas para transporte antes

do início de operação do sistema;

- ancoragens, guias ou suportes inadequados;
- falhas nas ancoragens, suportes ou guias durante a operação;
- corrosão do fole provocada pelo fluido ou meio ambiente;
- corrosão sob tensão;
- pressão ou temperatura de trabalho acima da prevista para o fole;
- excessos (picos) de pressão ou temperatura;
- falha por fadiga provocada por vibração excessiva;
- movimentos excessivos;
- erosão interna do fole em virtude da velocidade do fluxo ou presença de sólidos em suspensão;
- material estranho entre as corrugações que impeçam o seu movimento;

Modo de Falha	Causa	Solução Mais Usual
Corrosão sob tensão na presença de cloretos	Ação de cloretos sobre aços inoxidáveis austeniticos altamente tensionados	Uso de ligas alto níquel - (Ex.: Inconel 600 ou Inconel 625)
Precipitação intergranular de Carbetos	A precipitação de carbetos em aços inoxidáveis não estabilizados submetidos a altas temperaturas (maior que 450°C) causando a perda de resistência a corrosão nas bordas dos grãos.	Uso de aços inox estabilizados (Ex.: I-321) ou com baixos níveis de Carbono (Ex.: I-304L).
Corrosão por Pitting	Pequenos furos provocados por ação galvânica, geralmente na presença de ácidos	Uso de aços com adição de molibidênio (Ex.: l-316 Incoloy 825 ou ainda o Inconel 625)
Corrosão por Condensação	Condensação de vapores contendo um alto percentual de enxofre (temperatura de operação menor que a temperatura de condensação (dew point).	Isolação externa dos foles de modo a manter a temperatura superior ao ponto de condensação (dew point) ou ainda a adoção de aquecimento externo do fole (hot blanket).

NORMAS TÉCNICAS CITADAS:

EJMA - Expansion Joint Manufacturers Association Eighth Edition - 2003

ASTM - American Society fot Testing Materials

ASME - American Society of Mechanical Engineers

ANSI - American National Standard Institute

AISI - American Iron and Steel Institute

[&]quot;Os parâmetros de aplicação indicados neste catálogo são típicos. Para cada aplicação específica deverá ser realizado um estudo independente e uma avaliação de compatibilidade. Consultenos a respeito de recomendações para aplicações específicas. Um equívoco na seleção do produto mais adequado ou na sua aplicação pode resultar em danos materiais e/ou em sérios riscos pessoais, sendo que a Teadit não se responsabiliza pelo uso inadequado das informações constantes do presente catálogo, nem por imprudência, negligência ou imperícia na sua utilização, colocando seus técnicos à disposição dos consumidores para esclarecer dúvidas e fornecer orientações adequadas em relação e aplicações específicas. Estas específicações estão sujeitas a mudanças sem prévio aviso, sendo que esta edição substitui todas as anteriores. "Mar/2004

FOLHA PARA ESPECIFICAÇÃO DE JUNTAS DE EXPANSÃO TERMATIC®

Cliente:		Te	l.:	
Referiencia:		Fc	ix:	
Contato:		E	-mail:	
Cidade:		Es	tado:	
Item:				
TAG:				
Quantidade:				
Dimensões (∅ ou ‡):				
Comprimento (mm):				
		Condições		
Fluído				
Pressão (bar)				
Temperatura (°C)				
		Movimentos		
Axial compressão (mm)				
Axial extensão (mm)				
Lateral (mm)				
Angular (graus)				
Freqüência (Hz)				
	Ma	teriais das Junta	s	
Terminais				
Flanges				
Fole				
Guia Interna				
Proteção externa				
Tirantes				
		Conexões		
Flanges (norma)				
Ponta para solda				
	Note	as / Comentários		
	14010	, 		

Tire cópia desse formulário, preencha e envie para o fax: (19) 3225-5614 ou, se for mais conveniente, transmita todas as informações solicitadas acima, via e-mail, para juntas@teadit.com.br

FOLHA PARA ESPECIFICAÇÃO DE JUNTAS DE EXPANSÃO TERMATIC® PARA TROCADORES DE CALOR

Cliente:			Tel.:				
Referência:		Fo	Fax:				
Contato:		E	E-mail:				
Cidade:		Es	Estado:				
Item:							
TAG:							
Quantidade:							
Dimensões (Ø):	_						
Comprimento (mm):							
	Condiçõe	es dos Feixes Tub	oulares				
Material dos Tubos							
Temperatura mínima (°C)							
Temperatura máxima (°C)							
Distância entre espelhos							
	Con	ndições dos Casco	os				
Material							
Pressão (bar)							
Temperatura mínima (°C)							
Temperatura máxima (°C)							
Espessura (mm)							
Diâmetro interno (mm)							
Fluido							
	Ma	iteriais das Junta	ıs				
Terminais							
Fole							
Guia Interna							
Proteção externa				T			
Terminais fornecidos por: () cliente () Teadit					
	Note	as / Comentários	3				

Tire cópia desse formulário, preencha e envie para o fax: (19) 3225-5614 ou, se for mais conveniente, transmita todas as informações solicitadas acima, via e-mail, para juntas@teadit.com.br

JUNTAS DE EXPANSÃO NÃO-METÁLICAS - FREEFLEX®

- FÁCIL MONTAGEM EM CAMPO
 - MAIOR DURABILIDADE
- MELHOR ABSORÇÃO DE MOVIMENTOS

A **TEADIT**® possui equipe treinada e especializada para executar a instalação, manutenção e reparos de **Juntas de Expansão - FREEFLEX**®, no campo.

SUMÁRIO FREEFLEX

1.	Introdução	57	
2.	Variáveis de Projeto	58	
	2.1. Dimensões	58	
	2.2. Tipos de Fluidos	58	
	2.3. Pressão Interna	58	
	2.4. Temperatura		
	2.5. Movimentos		
	2.5.1 Axial de Compressão	59	
	2.5.2 Axial de Extensão		
	2.5.3 Lateral		
	2.5.4 Angular		
	2.5.5 Torção 2.6. Esforços Gerados pela Junta		
2	Formas Construtivas		
٥.			
	3.1. Tipos Construtivos		
	3.1.2 Carretel		
	3.2. Tipos de Foles		
	3.2.1. Série Quality		
	3.2.2. Série Premium		
_			
4.	Componentes		
	4.1. Fole Compensador		
	4.2. Estrutura Metálica		
	4.3. Guias Internas		
	4.4. Selo Anti-pó / Isolante		
	4.5. Aba de Reforço		
	4.6. Barras de Aperto	62	
	4.8. Isolamento Externo dos Dutos	62	
	4.9. Conexão por Flanges		
E Folo	Compensador		
5. FUIE	5.1. Classificação dos Tipos de Foles	61	
	5.1.1. Classificação de Serviços	61	
	5.1.2. Classificação dos Limites de Temperatura e Pressão		
	5.2. Estrutura Metálica		
6. Como	o Especificar	66	
7. Tabel	as Dimensionais		
	Tabela 7.1 a Tabela 7.5 - Dimensional das Estruturas		- 72
	Tabela 7.6 - Padrão de Furação para Flanges Circulares		
	Tabela 7.7 - Padrão de Furação para Flanges Retangulares	73	
8. Trans	porte, Armazenagem e Instalação		
	8.1. Cuidados no Transporte		
	8.2. Dispositivos de Transporte		
	8.3. Armazenagem		
	8.4. Inspeção Prévia e Instalação		
	8.5. Guia de Torque dos Parafusos	/6	
9.	Inspeções	77	
	9.1. Inspeção antes da Partida da Unidade	<i>77</i>	
	9.2. Inspeção Imediatamente após a Partida da Unidade	<i>77</i>	
	9.3. Inspeções Rotineiras e de Manutenção		
	9.4. Descarte de Elementos Substituídos das Juntas	<i>7</i> 8	
10. Cau	sas de Falhas	79	
11 Car	riços On-site de Juntas de Expansão FREEFLEX®	02	
Formul	ário de Juntas de Expansão - FREEFLEX®	85	

1. Introdução

expansão ou contração térmica em tubulações, dutos e equipamentos que trabalham com fluidos quentes ou frios, expostos a grandes variações de temperatura, é uma das dificuldade mais freqüentemente encontrada no projeto destes sistemas.

Entre os métodos existentes para compensar estas variações dimensionais, o uso de juntas de expansão é uma das alternativas preferidas, em virtude das vantagens que propiciam.

As Juntas de Expansão **FREEFLEX®** Teadit minimizam as perdas de carga e de energia, reduzindo os custos de projeto e de instalação.

As Juntas de Expansão **FREEFLEX®** Teadit podem também atuar como isoladores de vibração e, em alguns casos, como compensadores de pequenos desalinhamentos entre dutos ou equipamentos.

Fabricando juntas de expansão desde 1970, a Teadit possui grande experiência nas mais diferentes indústrias, como refinarias de petróleo, petroquímicas, indústrias químicas, açúcar e álcool, cimento, mineração, siderúrgicas e outras aplicações onde é necessário compensar dilatações térmicas.

O presente catálogo é um referencial para auxiliar no entendimento de como funcionam as juntas de expansão **FREEFLEX**® Teadit e suas diversas aplicações.

Projetos especiais com características ou aplicações que não possam ser atendidas pelos produtos relacionados neste catálogo devem ser enviados à Engenharia da Teadit, para tanto, utilize-se do formulário que se encontra no final deste catálogo.

2. VARIÁVEIS DE PROJETO

ara um desempenho correto e seguro de uma junta de expansão não-metálica é imprescindível atentar que se trata de um produto altamente especializado e que requer cuidados especiais nas fases de projeto, instalação e operação. Na maioria das aplicações de juntas de expansão

não-metálicas, antes de determinar-se qual o tipo, materiais e outros componentes são necessários, é obrigatória uma análise cuidadosa do sistema. A seguir estão listadas as principais variáveis que devem ser consideradas no projeto e na fabricação de uma junta de expansão - **FREEFLEX**®.

As juntas FREEFLEX® são projetadas para aplicações em sistema operando com:

Gases e Pressões entre -0,4 e +0,4 bar

2.1. DIMENSÕES

As dimensões dos dutos, sua geometria, o sentido de fluxo e o comprimento total da junta influem no seu projeto e na sua capacidade de absorver movimentos. Existem projetos de estruturas metálicas específicos para cada aplicação, que dependem de sua praticidade e acessibilidade para instalação e posterior manutenção.

2.2. TIPOS DE FLUIDOS

Os produtos em contato com a junta de expansão devem ser cuidadosamente analisados. A correta especificação do fluido é de suma importância para um projeto otimizado.

- A presença de enxofre (S), quando conhecida, deve ser informada, bem como o pH do fluido, particularmente quando tratar-se de fluidos extremamente ácidos ou cáusticos.
- Em fluxos com fluidos saturados, a probabilidade de condensação deve ser levada em consideração comparando-se o "ponto de orvalho" (dew point) do fluido com as temperaturas normais de operação. Mesmo em sistemas que operem em altas temperaturas, os paradas e partidas de unidades podem ocasionar a condensação.
- Sistema de dutos muito extensos, cuja isolação térmica externa seja deficiente podem ocasionar uma condensação pela perda de temperatura do fluido através das paredes dos dutos.
- Componentes abrasivos no fluxo, tais como poeira, materiais particulados, catalisadores, entre outros, precisam ser claramente

identificados e quantificados. Procedimentos de limpeza adotados para os sistemas de dutos, como por exemplo lavagens internas, devem ser obrigatoriamente informados ao projetista das juntas.

2.3. PRESSÃO INTERNA

A pressão de trabalho deve ser informada e situar-se entre os limites admitidos para as juntas não-metálicas, ou seja -0,4 bar e +0,4 bar. No entanto, variações súbitas de pressões em operação (flutter) são bastante prejudiciais e devem ser consideradas. O "flutter" também pode ser induzido pela turbulência do fluxo, particularmente em juntas instaladas próximas a ventiladores de grande tiragem ou turbinas à gás.

É importante salientar que juntas de expansão não-metálicas não são estanques (leak-proof). Elas são projetadas para terem uma elevada, porém não absoluta estanqueidade, perfeitamente admissíveis para as aplicações industriais a que são destinadas.

2.4. TEMPERATURA

A correta especificação da temperatura de operação do sistema, bem como os seus "picos" de máximo e mínimo influem diretamente na seleção do tipo de fole compensador.

Um cuidado especial na determinação das temperaturas é não adotar excessivos coeficientes de segurança.

2.5. MOVIMENTOS

A real determinação dos movimentos a serem absorvidos é imprescindível para a especificação correta do comprimento ativo do fole compensador, o qual, em última análise, é o responsável direto pela capacidade da junta não-metálica em absorver movimentos.

Devem ser verificados, além dos movimentos de origem térmica os de outras fontes, tais como: vibrações e desalinhamentos.

Movimentos nas diversas direções devem ser analisados para determinar se ocorrem simultaneamente. Os movimentos absorvidos por uma junta de expansão não-metálica podem ser:

1) AXIAL DE COMPRESSÃO

2) AXIAL DE EXTENSÃO

3) LATERAL

4) ANGULAR

5) Torção

2.6. ESFORÇOS GERADOS PELA JUNTA

Os esforços gerados pelas juntas de expansão nãometálicas são bastante reduzidos. A força necessária para flexionar o fole é tão insignificante que não é levada em consideração. A força de pressão (figura 6) é uma condição criada pela instalação de um elemento flexível, a junta de expansão, em uma tubulação rígida pressurizada. É uma função da pressão interna do sistema, e das dimensões do fole. Calcula-se a amplitude da força de pressão multiplicando-se a área efetiva (transversal) do fole compensador pela pressão interna do sistema.

FORÇA DE PRESSÃO

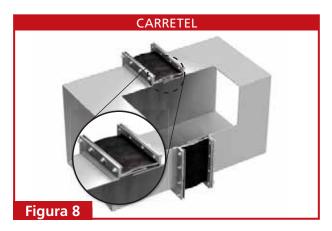
3. FORMAS CONSTRUTIVAS

3.1. TIPOS CONSTRUTIVOS

Existem dois tipos construtivos básicos de foles compensadores: Tubular e Carretel

3.1.1. TUBULAR

Este tipo construtivo permite ligação flangeada ou com terminação para solda (Figura 7). Sua geometria é mais favorável ao fole compensador. Tem custo inicial mais elevado que o tipo carretel, mas, possui a vantagem da troca do elemento flexível com muita facilidade, sem a necessidade de desmontagem da estrutura metálica da junta.


Temperatura de operação máxima: 1200 °C.

3.1.2. CARRETEL

Este tipo construtivo tem terminação flangeada e perfil "U" da parte flexível (Figura 8). Permite uma menor distância entre os flanges e uma construção estrutural simplificada, reduzindo o custo inicial da junta. Entretanto, não permite a fácil reposição do elemento flexível, elevando o custo de manutenção.

Temperatura de operação máxima: 540 °C.

3.2. TIPOS DE FOLES

A Teadit possui dois tipos básicos de foles compensadores: a série **Quality** e a série **Premium**.

A série Quality é uma opção mais econômica para aplicações em serviços menos agressivos. A série Premium é uma opção mundialmente empregada que proporciona excepcional performance, mesmo em aplicações quimicamente agressivas, tais como plantas de dessulfurização e caldeiras de recuperação química em indústrias de papel e celulose.

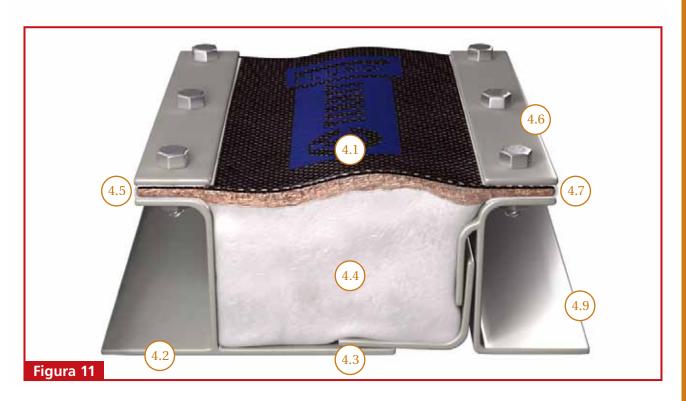
3.2.1. SÉRIE QUALITY

Apresenta acabamento externo em tecido de fibra de vidro impermeabilizado com elastômero a base de silicone (Figura 9).

3.2.2. SÉRIE PREMIUM

Apresenta o acabamento externo impregnado com PTFE sobre tecido de fibra de vidro e internamente é revestido com uma lâmina de PTFE (Figura 10).

FREEFLEX® TSU PARA 250 °C



FREEFLEX® TMT PARA 315 °C

4. COMPONENTES

4.1. FOLE COMPENSADOR

O fole compensador é composto de múltiplas camadas de tecidos inorgânicos, lâminas de fluorpolímeros sobrepostas com impermeabilização de silicone ou PTFE destinadas a proporcionar-lhe resistência mecânica, compatibilidade química, resistência à temperatura e flexibilidade para absorção dos movimentos. Em compensadores, que operem em altas temperaturas, formados por múltiplas camadas de tecidos e mantas isolantes térmicas de elevadas espessuras, pode-se utilizar uma tela metálica para efeito de estruturação mecânica do compensador, mantendo sua integridade.

4.1 - Fole Compensador

4.2. ESTRUTURA METÁLICA

As estruturas metálicas são necessárias para a fixação do fole compensador aos dutos. Adequadamente projetadas, estas estruturas podem ser fixadas diretamente aos dutos, por conexões soldadas, dispensando o uso de flanges adicionais e possibilitando desta forma uma grande economia. Sua geometria é fator preponderante para o adequado desempenho do fole compensador e futuras intervenções de manutenção.

4.2 - Estrutura Metálica

4.3. GUIAS INTERNAS

As guias internas são projetadas para proteção do fole compensador, do selo anti-pó e do selo de proteção térmica contra o fluxo turbulento.

As guias são igualmente utilizadas no auxílio do controle do acúmulo de materiais particulados na cavidade interna da estrutura metálica, além de eficientes na manutenção do gradiente térmico entre o fluido e o fole compensador. Como regra básica devem ser adotadas sempre que a velocidade do fluxo for superior a 10 m/s.

4.3 - Guias Internas

4.4. SELO ANTI-PÓ / ISOLANTE

O selo anti-pó tem seu uso obrigatório sempre que o fluido possuir partículas sólidas em suspensão, para impedir o acúmulo destes materiais na estrutura metálica. Caso exista o acúmulo de sólidos nestas cavidades, a junta perderá sua flexibilidade ou, em certos casos, estas partículas podem entrar em combustão, atingindo temperaturas muito elevadas. Também nos dutos de saída de turbinas a gás ou ventiladores de grande tiragem, é necessário o preenchimento da cavidade para evitar que as variações de pressão (flutter), na partida do equipamento, provoquem o rompimento prematuro do fole compensador.

Em juntas que operam em elevadas temperaturas este selo é também utilizado como isolante térmico adicional, permitindo aplicações de até 1.200 °C.

4.4 - Selo Anti-pó / Isolante

4.5. ABA DE REFORÇO

Fabricada à base de tecidos com elevada capacidade de isolação térmica tem a função de proteger o compensador do calor transmitido, por condução, pelas estruturas metálicas.

4.5 - Aba de Reforço

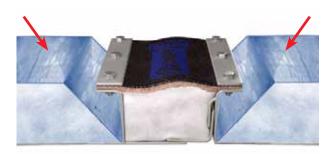
4.6. BARRAS DE APERTO

Posicionadas sobre a parte externa do compensador, tem a função de fixação do mesmo à estrutura metálica e proporcionar a selabilidade do sistema quando em operação. Sua largura, bem como sua espessura, devem ser adequadamente projetadas para cumprir esta função, levando-se em conta o correto espaçamento dos parafusos.

Apresentam suas bordas arredondadas para impedir danos ao fole compensador.

4.6 - Barras de Aperto

4.7. VEDAÇÃO ADICIONAL


Embora o fole compensador possua sua própria superfície de vedação, em determinadas situações torna-se necessária a adoção desta vedação adicional para compensar irregularidades particularmente nos casos de pouca espessura do fole compensador.

4.7 - Vedação Adicional

4.8. ISOLAMENTO EXTERNO DOS DUTOS

Geralmente presente em sistemas que operam em elevadas temperaturas, o isolamento externo não deve sobrepor-se ao fole compensador sob risco de impedir a troca térmica do fole com o meio ambiente, deteriorando-o de forma irreversível. Sua correta instalação está ilustrada na figura ao lado. Detalhes sobre a transição, vide página 23, figuras 14 e 15.

4.8 - Isolamento Externo dos Dutos

4.9. CONEXÃO POR FLANGES

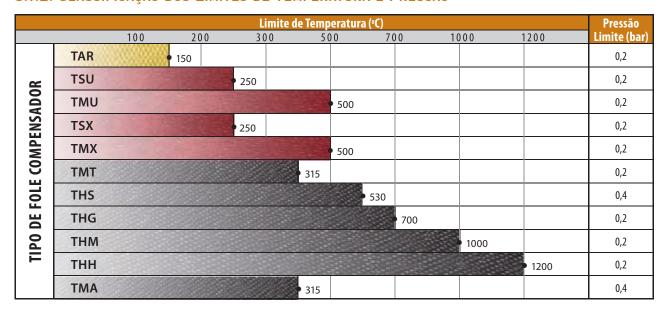
Embora a Teadit recomende, por economia, a adoção de conexões soldadas (conforme item 4.2), existe a opção de conexões por flanges. Neste caso o padrão recomendado está descrito na página 21, tabelas 7.6 e 7.7.

5. FOLE COMPENSADOR

Os foles compensadores são desenvolvidos para atender as mais variadas combinações de fluido, temperatura e pressão. A Classificação de Serviços abaixo, mostra o tipo de fole mais indicado para diversas condições operacionais.

5.1. CLASSIFICAÇÃO DOS TIPOS DE FOLES

- TAR: Fole confeccionado em tecidos de fibra aramida com acabamento externo em silicone
- TSU: Fole confeccionado em tecidos de fibra de vidro com acabamento externo em silicone.
- TSX: Mesma composição do TSU, porém acrescido de uma película de PTFE que funciona como barreira química aos gases.
- TMU: Fole composto de tecido de fibra de vidro, manta cerâmica e com acabamento externo em silicone.
- TMX: Mesma composição do TMU, porém com a inclusão de uma película de PTFE que funciona como barreira química aos gases.
- TMT: Fole composto por um tecido de fibra de vidro e uma


barreira química em laminado de PTFE, com acabamento externo em coating de PTFE.

- THS: Fole composto por uma manta isolamente térmica em feltro de fibra de vidro, um tecido de fibra de vidro com uma barreira química em laminado de PFFE e acabamento externo em coating de PTFE.
- THG: Mesma composição do THS, porém com a inclusão de uma manta cerâmica isolante.
- THM e THH: Mesma composição do THG, porém com a inclusão de uma maior espessura de manta cerâmica isolante.
- TMA: Fole composto por um tecido de fibra de vidro e uma barreira química em laminado de PTFE de elevada espessura, com acabamento externo em coating de PTFE.

5.1.1. CLASSIFICAÇÃO DE SERVIÇOS

	SERVIÇOS	FOLE COMPENSADOR	
ESSIVO	Vibração Sem Ataque Ácido ar quente, gases de processo sem enxofre.	TAR	
MENOS AGRESSIVO	Sem Ataque Ácido ar quente, gases de processo sem enxofre.	TSU - TMU	
W	Com Ataque Ácido Moderado gases com traços de enxofre e sem formação de condensado ácido.	TSX - TMX	2.00
MAIS ABRESSIVO	Com Ataque Ácido Elevado gases com presença de enxofre e sem formação de condensado ácido.	TMT - THS - THG THM - THH	
MAIS A	Com Ataque Ácido Severo gases com presença de enxofre e formação de condensado ácido.	TMA	

5.1.2. CLASSIFICAÇÃO DOS LIMITES DE TEMPERATURA E PRESSÃO

5.2. ESTRUTURA METÁLICA

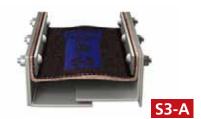
Os foles compensadores são fixados aos dutos por intermédio de estruturas metálicas próprias. Estas estruturas apresentam-se em várias dimensões e formatos visando sempre proporcionar a melhor condição de trabalho para o fole compensador e os demais componentes, tais como: selo anti-pó, selo térmico, guias de fluxo, entre outros.

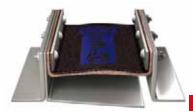
ESTRUTURA TIPO SI

A estrutura **TIPO S1** proporciona maior durabilidade do fole e apresenta a melhor relação custo beneficio. É universalmente aceita como a melhor opção de projeto por garantir maior confiabilidade em operação. **Indicada para temperatura de até 700°C**.

S1-A

S1-B


ESTRUTURA TIPO S2


A estrutura **TIPO S2**, além das características técnicas do tipo S1, incorpora guia interna flutuante, que restringe a entrada de partículas do fluido na cavidade do selo anti-pó, protegendo o fole e permitindo movimentos laterais de maior amplitude. Recomendada para gases com sólidos em suspensão. **Indicada para temperatura de até 1200°C**.

ESTRUTURA TIPO S3

A estrutura **TIPO S3** é a opção quando há limitação de espaço, que não permita a utilização dos tipos S1 e S2. Essa estrutura pode ser utilizada em dutos circulares ou retangulares, sendo que nesses últimos, os cantos retos induzem maior tensão nos foles, reduzindo sua vida útil. **Indicada para temperatura de até 540°C**.

S3-B

ESTRUTURAS SOB ENCOMENDA

A TEADIT fornece, sob encomenda, os mais diversos tipos de estruturas metálicas. Algumas variações são mostradas a seguir:

6. COMO ESPECIFICAR

Para escolher a junta **FREEFLEX**® mais adequada à sua aplicação, siga os passos de 1 a 8, abaixo:

EXEMPLO:

Condições de Operação:

- Movimento Axial de Compressão (mm): 50
- Movimento Lateral (mm): 20
- Pressão (bar): 0,15
- Temperatura (°C): 510

- Fluido: gases de combustão, com traços de enxofre sem partículas em suspensão
- Tubulação: tubo com diâmetro externo de 900 mm, com conexão flangeada.

Passo 1: Verifique se as condições operacionais (fluido, pressão e temperatura) estão dentro dos limites para juntas *FREEFLEX®*, ou seja: gás, pressão máxima até **0,4 bar**, temperatura máxima de **1200 °C**.

EXEMPLO:

- A pressão de 0,15 bar (sim, é menor que 0,4 bar)
- B temperatura de 510 °C (sim, é menor que 1200 °C)
- C gases de combustão (sim, é gás)

PASSO 2: Escolha no item 5.1 - Classificação de Serviços o tipo de fole compensador adequado em função das condições operacionais. EXEMPLO:

Pressão de operação 0,15 bar, temperatura de 510 °C e gases de combustão com traços de enxofre, levam à opção pelo fole compensador, tipo <u>THS</u>.

Os foles compensadores são desenvolvidos para atender as mais variadas combinações de fluido, tem-peratura e pressão. A Classificação de Serviços abaixo, mostra o tipo de fole mais indicado para diver-5.1. CLASSIFICAÇÃO DOS TIPOS DE FOLES TAR: Fole confeccionado em tecidos de fibra aramida com acobamento atermo em silicone em silicone em colorigue (PTE, com acobamento atermo em silicone.
 TSU: Fole confeccionado em tecidos de fibra de vidro com acobamento atermo em silicone.
 TSK: Meman composição do TSU, portem acrescido de uma per TSX: Mesma composição do TSU, porém acrescido de uma pe-licula de PTFE que funciona como barreira química aos gases. * TMU: Fole composto de tecido de fibra de vidro, manta cerâ-mica e com acabamento externo em silicone. THM e THH: Mesma composição do THG, porém o são de uma maior espessura de manta cerâmica isola TMX: Mesma composição do TMU, porém com a inclusão de uma película de PTFE que funciona como barreira química TΔR Sem Ataque Ácido TSU - TMU TSX - TMX TMT THS THG THM - THH TIPO DE FOLE COMPENSADOR TSX TMT 0,2 THG 0,2 THM 0,2

Passo 3: Definir o tipo de estrutura metálica conforme item 5.2 - Estrutura Metálica.

O material da estrutura metálica deve ser pre-

ferencialmente o mesmo da tubulação.

EXEMPLO:

No caso, como não existem partículas em suspensão, escolhe-se a estrutura <u>tipo \$1</u>.

Passo 4: Determinar, em função do tipo do fole compensador e estrutura selecionada, as dimensões (comprimento e altura) nas Tabelas 7.1 a 7.5. Juntas que trabalham com pressões negativas devem ter a altura da estrutura metálica (cota C das tabelas) ampliada para evitar danos ao fole, por contato do mesmo com a guia interna da Junta.

EXEMPLO:

Para fole compensador **tipo THS**, estrutura **tipo S1**, movimento axial de **50 mm** e movimento lateral de **20 mm**.

Consultando a <u>Tabela 7.3</u>, teremos uma estrutura tipo <u>S1-B</u> com altura "C" de 100 mm e comprimento "L" de 330 mm porém, devido a conexão ser com flanges, o comprimento final deverá ser de <u>395 mm</u> (acrescidos 65 mm conforme nota 1 das tabelas 7.1 a 7.5).

Passo 5: Caso exista sólido em suspensão no fluido, independente da temperatura, a Junta deverá ser especificada com selo anti-pó.

EXEMPLO:

Não há sólidos em suspensão.

Passo 6: Determine a conexão desejada: ponta para solda ou flange. No caso de Junta flangeada o comprimento total (cota L) será acrescido de 65mm. Para detalhamento dos flanges ver Padrão de Furação para Flanges - Tabelas 7.6 e 7.7.

EXEMPLO:

No caso a conexão é por flanges e o comprimento L é acrescido de 65mm, passando o comprimento total para 395mm (no exemplo do passo 4 o L é 330mm).

Passo 8: Para projetos especiais, cujas as características não foram atendidas pelas alternativas apresentadas, favor preencha o formulário da página 33 e envie para Teadit Juntas.

Passo 7: Resultado

EXEMPLO:

Junta de expansão **FREEFLEX®** - THS, tubular circular com estrutura metálica em aço carbono tipo S1-B flangeada, no diâmetro de 900 e comprimento de 395 mm.

7. TABELAS DIMENSIONAIS

TABELA 7.1

DIMENSÕES DAS ESTRUTURAS PARA JUNTAS TIPO TAR - TSU - TMU

TAR

Temperatura Máxima (°C) = 150 Pressão Máxima (bar) = 0,2

TSU

Temperatura Máxima (°C) = 250 Pressão Máxima (bar) = 0,2

TMU

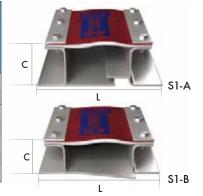
Temperatura Máxima (°C) = 500 Pressão Máxima (bar) = 0,2

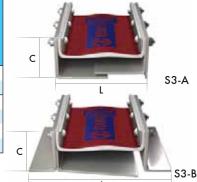
NOTAS EXPLICATIVAS

- 1 As estruturas S1 e S2 podem ser fornecidas com flanges, neste caso deve-se acrescentar 65 mm ao L encontrado nas tabelas abaixo.
- **2 –** Os movimentos Axiais e Laterais podem atuar simultaneamente.
- **3 –** As estruturas S2 são fornecidas com selo isolante/anti-pó.
- 4 As estruturas \$1 e \$3 podem ser fornecidas com diferentes tipos de guia interna, adequando-as a cada situação.
- **5** Para pressões de operação negativas recomenda-se utilizar a estrutura tipo S2.
- 6 Consultar a Teadit Juntas, para aplicações do tipo S1-B e S3-B em dutos inferiores a 1m².

TABELA 7.1.S1: VALORES DE ALTURA (C) E COMPRIMENTO (L) PARA MOVIMENTO LATERAL E AXIAL

	CI		Movim	entos A	Axiais N	láximo	s (mm)		
	31	40	60	80	100	122	166	207	(
Estrutura	Movimentos Laterais Máximos (mm)	L	L	L	L	L	L	L	(mm)
S1-A	20	230	280	330	380	430	530	610	100
31-A	30	280	280	330	380	430	530	610	100
	40	330	330	330	380	430	530	610	100
	50	380	380	380	380	430	530	610	100
S1-B	60	430	430	430	430	430	530	610	100
	80	530	530	530	530	530	530	610	100
	100	610	610	610	610	610	610	610	100




TABELA 7.1.S2: VALORES DE ALTURA (C) E COMPRIMENTO (L) PARA MOVIMENTO LATERAL E AXIAL

	C2		Movim	entos <i>F</i>	Axiais N	láximo	s (mm)		_
	3 Z	40	60	80	100	122	166	207	(mm)
is		L	L	L	L	L	L	L	(111111)
tera m)	20	230	280	330	380	430	530	610	100
Late mm)	30	280	280	330	380	430	530	610	120
tos l	40	330	330	330	380	430	530	610	160
ent	50	380	380	380	380	430	530	610	200
ă, ă	60	430	430	430	430	430	530	610	240
Movii	80	530	530	530	530	530	530	610	320
Σ	100	610	610	610	610	610	610	610	400

TABELA 7.1.S3: VALORES DE ALTURA (C) E COMPRIMENTO (L) PARA MOVIMENTO LATERAL E AXIAL

	62	Λ	/lovimen	itos Axia	is Máxir	nos (mm	1)	
	33	40	60	80	100	122	166	(
Estrutura	Movimentos Laterais Máximos (mm)	L	L	L	L	L	L	(mm)
S3-A	20	160	210	260	310	360	460	115
33-A	30	210	210	260	310	360	460	125
	40	260	260	260	310	360	460	63
C2 B	50	310	310	310	310	360	460	63
S3-B	60	360	360	360	360	360	460	63
	80	460	460	460	460	460	460	63

TABELA 7.2 DIMENSÕES DAS ESTRUTURAS PARA JUNTAS TIPO TSX - TMX

TSX

Temperatura Máxima ($^{\circ}C$) = 250 Pressão Máxima (bar) = 0,2

TMX

Temperatura Máxima (°C) = 500 Pressão Máxima (bar) = 0,2

NOTAS EXPLICATIVAS

- 1 As estruturas S1 e S2 podem ser fornecidas com flanges, neste caso deve-se acrescentar 65 mm ao L encontrado nas tabelas abaixo.
- **2 –** Os movimentos Axiais e Laterais podem atuar simultaneamente.
- **3 –** As estruturas S2 são fornecidas com selo isolante/anti-pó.
- 4 As estruturas \$1 e \$3 podem ser fornecidas com diferentes tipos de guia interna, adequando-as a cada situação.
- **5** Para pressões de operação negativas recomenda-se utilizar a estrutura tipo S2.
- **6** Consultar a Teadit Juntas, para aplicações do tipo \$1-B e \$3-B em dutos inferiores a 1m².

TABELA 7.2.S1: VALORES DE ALTURA (C) E COMPRIMENTO (L) PARA MOVIMENTO LATERAL E AXIAL

		CI		Movimentos Axiais Máximos (mm)									
		21	36	54	72	90	108	148	183	c			
Estru	ıtura	Movimentos Laterais Máximos (mm)	L	L	L	L	L	L	L	(mm)			
S1-A	18	230	280	330	380	430	530	610	100				
31	-A	27	280	280	330	380	430	530	610	100			
		36	330	330	330	380	430	530	610	100			
		45	380	380	380	380	430	530	610	100			
S1	-B	54	430	430	430	430	430	530	610	100			
		72	530	530	530	530	530	530	610	100			
		90	610	610	610	610	610	610	610	100			

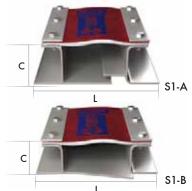


TABELA 7.2.S2: VALORES DE ALTURA (C) E COMPRIMENTO (L) PARA MOVIMENTO LATERAL E AXIAL

	60		Movim	entos A	xiais N	láximo	s (mm)		_
	3 Z	36	54	72	90	108	148	183	(mm)
is		L	L	L	L	L	L	L	(111111)
atera nm)	18	230	280	330	380	430	530	610	100
15	27	280	280	330	380	430	530	610	108
	36	330	330	330	380	430	530	610	144
entos imos	45	380	380	380	380	430	530	610	180
a, a	54	430	430	430	430	430	530	610	216
Movi	72	530	530	530	530	530	530	610	288
Σ	90	610	610	610	610	610	610	610	360

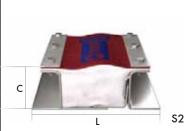
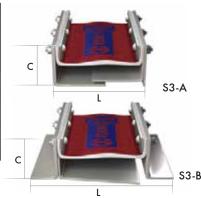



TABELA 7.2.53: VALORES DE ALTURA (C) E COMPRIMENTO (L) PARA MOVIMENTO LATERAL E AXIAL

	62	N	/lovimer	itos Axia	is Máxir	nos (mm	1)	
	3 -3	36	54	72	90	108	148	C
Estrutura	Movimentos Laterais Máximos (mm)	L	L	L	L	L	L	(mm)
S3-A	18	160	210	260	310	360	460	115
33-A	27	210	210	260	310	360	460	125
	36	260	260	260	310	360	460	63
C2 D	45	310	310	310	310	360	460	63
S3-B	54	360	360	360	360	360	460	63
	72	460	460	460	460	460	460	63

TABELA 7.3 DIMENSÕES DAS ESTRUTURAS PARA JUNTAS TIPO TMT — TMA - THS

TMT

Temperatura Máxima (°C) = 315 Pressão Máxima (bar) = 0,2

TMA

Temperatura Máxima (°C) = 315 Pressão Máxima (bar) = 0,4

THS

Temperatura Máxima (°C) = 530 Pressão Máxima (bar) = 0,4

NOTAS EXPLICATIVAS

- 1 As estruturas S1 e S2 podem ser fornecidas com flanges, neste caso deve-se acrescentar 65 mm ao L encontrado nas tabelas abaixo.
- **2 –** Os movimentos Axiais e Laterais podem atuar simultaneamente.
- **3** As estruturas S2 são fornecidas com selo isolante/anti-pó.
- 4 As estruturas \$1 e \$3 podem ser fornecidas com diferentes tipos de quia interna, adequando-as a cada situação.
- **5** Para pressões de operação negativas recomenda-se utilizar a estrutura tipo \$2.
- **6** Consultar a Teadit Juntas, para aplicações do tipo \$1-B e \$3-B em dutos inferiores a 1m².

TABELA 7.3.S1: VALORES DE ALTURA (C) E COMPRIMENTO (L) PARA MOVIMENTO LATERAL E AXIAL

	CI		Movim	entos /	Axiais N	/láximo	s (mm)		
	31	24	44	64	84	104	144	170	c
Estrutura	Movimentos Laterais Máximos (mm)	L	L	L	L	L	L	L	(mm)
S1-A	8	230	280	330	380	430	530	630	100
31-A	14	280	280	330	380	430	530	630	100
	21	330	330	330	380	430	530	630	100
	27	380	380	380	380	430	530	630	100
S1-B	34	430	430	430	430	430	530	630	100
	47	530	530	530	530	530	530	630	100
	60	630	630	630	630	630	630	630	100

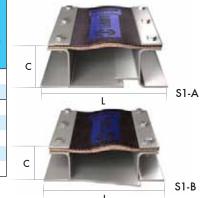


TABELA 7.3.S2: VALORES DE ALTURA (C) E COMPRIMENTO (L) PARA MOVIMENTO LATERAL E AXIAL

	C2		Movim	entos /	Axiais N	/láximo	s (mm)		
	3 Z	24	44	64	84	104	144	170	(mm)
is		L	L	L	L	L	L	L	(111111)
tera m)	8	230	280	330	380	430	530	630	100
E E	14	280	280	330	380	430	530	630	100
	21	330	330	330	380	430	530	630	100
E E	27	380	380	380	380	430	530	630	108
E X	34	430	430	430	430	430	530	630	136
Movi	47	530	530	530	530	530	530	630	188
Ž	60	630	630	630	630	630	630	630	240

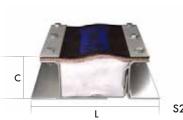
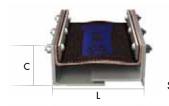
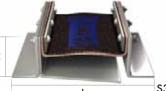




TABELA 7.3.S3: VALORES DE ALTURA (C) E COMPRIMENTO (L) PARA MOVIMENTO LATERAL E AXIAL

	60	Мо	viment	os Axia	is Máxi	imos (n	nm)		
	33		44	64	84	104	144	170	ر
Estrutura	Movimentos Laterais Máximos (mm)	L	L	L	L	L	L	L	(mm)
S3-A	8	160	210	260	310	360	460	560	115
33-A	14	210	210	260	310	360	460	560	125
	21	260	260	260	310	360	460	560	63
	27	310	310	310	310	360	460	560	63
S3-B	34	360	360	360	360	360	460	560	63
	47	460	460	460	460	460	460	560	63
	60	560	560	560	560	560	560	560	63

S3-A

S3-B

TABELA 7.4 DIMENSÕES DAS ESTRUTURAS PARA JUNTAS TIPO THG

THG

Temperatura Máxima (°C) = **700** Pressão Máxima (bar) = **0,2**

NOTAS EXPLICATIVAS

- 1 As estruturas S1 e S2 podem ser fornecidas com flanges, neste caso deve-se acrescentar 65 mm ao L encontrado nas tabelas abaixo.
- **2 –** Os movimentos Axiais e Laterais podem atuar simultaneamente.
- **3** Em razão da temperatura estas juntas são fornecidas com selo isolante.
- 4 A estruturas S1 pode ser fornecida com diferentes tipos de guia interna, adequando-as a cada situação.

TABELA 7.4.S1: VALORES DE ALTURA (C) E COMPRIMENTO (L) PARA MOVIMENTO LATERAL E AXIAL

	CI A		Movim	entos <i>F</i>	xiais N	láximo	s (mm)		
	S1-A	24	44	64	84	104	144	170	C
rais		L	L	L	L	L	L	L	(mm)
Latera (mm)	8	230	280	330	380	430	530	610	150
ntos	14	280	280	330	380	430	530	610	150
Movimentos Máximos	21	330	330	330	380	430	530	610	150
Mov	27	380	380	380	380	430	530	610	150

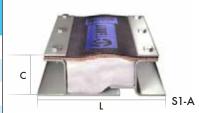
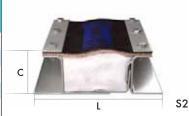



TABELA 7.4.52: VALORES DE ALTURA (C) E COMPRIMENTO (L) PARA MOVIMENTO LATERAL E AXIAL

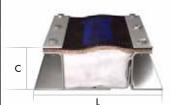
S2		Movimentos Axiais Máximos (mm)							
		24	44	64	84	104	144	170	(mm)
ais		L	L	L	L	L	L	L	(111111)
Movimentos Laterais Máximos (mm)	8	230	280	330	380	430	530	610	150
	14	280	280	330	380	430	530	610	150
	21	330	330	330	380	430	530	610	150
	27	380	380	380	380	430	530	610	150
	34	430	430	430	430	430	530	610	150
	47	530	530	530	530	530	530	610	200
Σ	60	610	610	610	610	610	610	610	200

TABELA 7.5 DIMENSÕES DAS ESTRUTURAS PARA JUNTAS TIPO THM - THH

THM

Temperatura Máxima (°C) = 1000 Pressão Máxima (bar) = 0,2

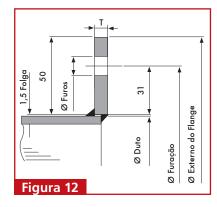
THH


Temperatura Máxima (°C) = 1200 Pressão Máxima (bar) = 0,2

NOTAS EXPLICATIVAS

- 1 A estrutura S2 pode ser fornecida com flanges, neste caso deve-se acrescentar 65 mm ao L encontrado na tabela abaixo.
- **2 –** Os movimentos Axiais e Laterais podem atuar simultaneamente.
- **3** Em razão da temperatura estas juntas são fornecidas com selo isolante.

TABELA 7.5.S2: VALORES DE ALTURA (C) E COMPRIMENTO (L) PARA MOVIMENTO LATERAL E AXIAL


CO		Movimentos Axiais Máximos (mm)							
	3 Z	21	39	56	74	91	126	161	(mm)
is		L	L	L	L	L	L	L	(111111)
Laterai (mm)	7	230	280	330	380	430	530	610	150
Lat (mr	12	280	280	330	380	430	530	610	150
	18	330	330	330	380	430	530	610	150
E E	23	380	380	380	380	430	530	610	150
e, š	29	430	430	430	430	430	530	610	150
Movi	40	530	530	530	530	530	530	610	200
Σ	51	610	610	610	610	610	610	610	220

. .

PADRÃO DE FURAÇÃO PARA FLANGES CIRCULARES

Ø Tubo	≥ 200 a < 350	≥ 350 a < 500	≥ 500 a < 650	≥ 650 a < 850	≥ 850 a < 1000	≥ 1000 a < 1150	≥ 1150 a <1350	≥ 1350 a <1500	≥ 1500 a < 1650	≥ 1650 a < 1800	≥ 1800 a < 2000
T (mm)	6,4	6,4	6,4	95	9,5	95	95	95	12,7	12,7	12,7
Nº Furos	8	12	16	20	24	28	32	36	40	44	48
Ø furos (mm)	12	12	12	12	12	16	16	16	16	16	16
Parafuso	3/8"	3/8"	3/8"	3/8"	3/8"	1/2"	1/2"	1/2"	1/2"	1/2"	1/2"

Exemplo:

Para um duto com diâmetro externo de 900 mm, temos:

1) NA TABELA DETERMINAR

- Espessura do flange: 9,5 mm (3/8")
- Numero de furos do flange: 24
- Diâmetro dos furos: 12 mm
- Parafuso: 3/8"

2) CALCULAR O FLANGE

- -Círculo de furação = $2x31 + \emptyset$ duto + 2x1,5 = 62 + 900 + 3 = 965 mm
- Diâmetro externo do flange = $2x50 + \emptyset$ duto + 2x1,5 = 100 + 900 + 3 = 1003 mm

TABELA 7.7 PADRÃO DE FURAÇÃO PARA FLANGES RETANGULARES

Lado Maior	≥360 e <560	≥ 560 a 760	≥760 a <960	≥ 960 a <1160	≥1160 a <1360	≥ 1360 a <1560	≥ 1560 a < 1760	≥ 1760 a < 1960	≥ 1960 a < 2160	≥ 2160 a < 2360	≥ 2360 a < 2560
T (mm)	6,4	6,4	6,4	9,5	9,5	9,5	12,7	12,7	12,7	12,7	12,7
Ø furos (mm)	12	12	12	12	12	16	16	16	16	16	16
Parafuso	3/8"	3/8"	3/8"	3/8"	3/8"	1/2"	1/2"	1/2"	1/2"	1/2"	1/2"
٨	≥360 e	≥ 560 a	≥760 a	≥ 960 a	≥ 1160 a	≥ 1360 a	≥ 1560 a	≥ 1760 a	≥1960 a	≥ 2160 a	≥ 2360 a
А	< 560	760	<960	<1160	<1360	<1560	< 1760	< 1960	< 2160	< 2360	< 2560
NEA	3	5	7	9	11	13	15	17	19	21	23
В	≥360 e	≥ 560 a	≥760 a	≥ 960 a	≥1160 a	≥ 1360 a	≥1560 a	≥ 1760 a	≥1960 a	≥ 2160 a	≥ 2360 a
D	< 560	760	<960	<1160	<1360	<1560	< 1760	< 1960	< 2160	< 2360	< 2560
NEB	3	5	7	9	11	13	15	17	19	21	23

- Cálculo da furação para flanges retangulares:
- A E B SÃO DIMENSÕES EXTERNAS DO DUTO NEA é o número de espaços de 100 mm no lado A
 - NEB é o número de espaços de 100 mm no lado B

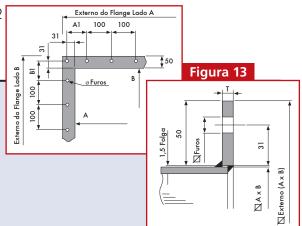
LADO A \Rightarrow A1 = [A + (2 x 31) + (2 x 1,5) - (100 x NEA)] / 2 **LADO B** \Rightarrow B1 = [B + (2 x 31) + (2 x 1,5) - (100 x NEB)] / 2 Número total de furos por flange = $[2 \times (NEA + NEB)] + 8$

Exemplo:

Para um duto retangular com dimensões externas de 1200 mm por 900 mm, temos:

1) NA TABELA DETERMINAR

- Espessura do flange: 9,5 mm (3/8")
- Diâmetro dos furos: 12 mm
- Parafuso: 3/8"
- Para A = 1200 mm: NEA = 11
- **Para B** = 900mm: NEB = 7


2) CALCULAR O FLANGE LADO A = 1200mm

- $-A1 = [A + (2 \times 31) + (2 \times 1,5) (100 \times NEA)]/2 = [1200 + (2 \times 31) + (2 \times 1,5) (100 \times 11)]/2 = 82,5 \text{ mm}$
- Externo do flange lado A = $(2 \times 50) + (2 \times 1,5) + A = (2 \times 50) + (2 \times 1,5) + 1200 = 1303$ mm

3) CALCULAR O FLANGE LADO B = 900mm

- $-B1 = [B + (2 \times 31) + (2 \times 1,5) (100 \times NEB)]/2 = [900 + (2 \times 31) + (2 \times 1,5) (100 \times 7)]/2 = 132,5 \text{ mm}$
- Externo do flange lado B = $(2 \times 50) + (2 \times 1,5) + B = (2 \times 50) + (2 \times 1,5) + 900 = 1003$ mm

Número total de furos por flange = $[2 \times (NEA + NEB)] + 8 = [2 \times (11 + 7) + 8 = 44 \text{ furos}]$

8. Transporte, Armazenagem E Instalação

8.1. CUIDADOS NO TRANSPORTE

A Teadit, dentro de seus rigorosos procedimentos de qualidade, adota e sugere que sejam observadas todas as medidas e precauções com respeito a embalagem, de forma a assegurar que o produto será recebido sem danos.

Os pontos a seguir deverão receber atenção dos clientes, transportadores e demais envolvidos na logística.

8.2. DISPOSITIVOS DE TRANSPORTE

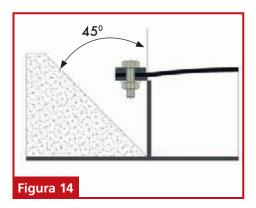
A Teadit providencia todos os meios necessários para a proteção das peças durante seu transporte, armazenagem e instalação. Travas de transporte são fixadas às estruturas metálicas e devem ser utilizadas para a proteção das peças durante a fase de instalação. Os dispositivos de trava para transporte, que devem ser removidos antes da entrada em operação do sistema, são pintados na cor amarela ou possuem outra forma de marcação que permita sua fácil identificação para a instalação da junta.

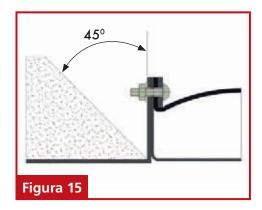
8.3. ARMAZENAGEM

Determinados ambientes industriais ou naturais, bem como algumas condições de armazenagem externa, podem ser danosos às juntas de expansão e devem, na medida do possível, ser evitados.

Exemplos: Juntas expostas a chuvas ácidas ou ambiente corrosivo em local aberto e desprotegido. Juntas expostas a faíscas, fogo, respingos de solda em sua proximidade ou em contato com qualquer objeto contundente que possa danificá-las.

O projetista do sistema deve optar por materiais compatíveis com essas condições caso não haja como evitá-las e a Teadit deve ser notificada ainda na fase de projeto.


8.4. INSPEÇÃO PRÉVIA E INSTALAÇÃO


Juntas de expansão, quando adquiridas montadas, desmontadas ou como componentes, devem ter a sua inspeção realizada na fábrica e ser embaladas para chegar ao local da montagem final em condições adequadas. O cliente, ou seu inspetor, deve imediatamente após o recebimento das juntas e com a listagem de despacho em mãos, verificar se todas as peças listadas foram recebidas

sem danos. A Teadit fornece instruções detalhadas com cada despacho e estas instruções devem ser revistas antes da instalação. Para assegurar a vida apropriada e seu desempenho em serviço, as seguintes inspeções preventivas devem ser feitas antes da instalação da junta de expansão **FREEFLEX**®.

- O espaço livre para instalação e o alinhamento dos dutos devem ser examinados para verificar se há desalinhamentos que excedam mais do que ½" (6 mm) em todos os sentidos. Se o espaço livre ou alinhamento do duto excederem essa tolerância, notifique a Teadit imediatamente para uma definição da solução do problema. As recomendações da pré-compressão (pre-setting) da Teadit devem ser rigorosamente seguidas na instalação das juntas de expansão.
- As superfícies de vedação dos flanges dos dutos e da junta de expansão devem estar lisas, limpas e paralelas.
- A área em torno dos dutos deve estar livre e desimpedida de todos os objetos estranhos e eventuais saliências afiadas. Se não for possível sua remoção, devem ser claramente identificados e sinalizados para evitar danos ao fole compensador durante a fase de montagem.
- A junta de expansão e/ou os seus componentes devem ser mantidos em suas embalagens originais de fábrica até o momento imediatamente anterior à sua instalação. A Teadit identifica claramente todos os dispositivos utilizados para movimentar a junta de expansão.
- Devem ser usadas mantas para proteção de respingos de solda, ou outra proteção adequada, se soldagens ou operações que envolvam a utilização de calor estiverem sendo executadas nas proximidades das juntas de expansão expostas. Estas proteções devem ser removidas antes da partida do sistema.

 Não aplicar a isolação térmica sobre a junta de expansão ou na área dos flanges, a menos que haja uma específica orientação da Teadit para este procedimento. Como regra geral seguir a orientação de como proceder à transição da isolação térmica nestas áreas, conforme mostrado nas figuras 14 e 15.

 Quando haja a ocorrência de acúmulo externo de poeira e/ou outros materiais, este fato deve ser comunicado à Teadit, que providenciará um projeto específico para proteção extra do fole compensador. O acúmulo externo de materiais combustíveis, tais como cavacos de madeira e carvão podem iniciar uma combustão espontânea resultando na quei-

ma do fole compensador. A proteção deve ser feita pela Teadit ou sob sua orientação. Vibrações que excedam as boas práticas de engenharia devem ser evitadas ou previamente comunicadas a Teadit, ainda na fase de projeto da junta de expansão.

- Caso a junta de expansão tenha sido armazenada por um longo período, recomenda-se a realização de inspeção, antes de sua instalação, para assegurar-se que não houve deterioração de seus componentes.
- É muito importante que o instalador tenha em mente que as juntas de expansão são fornecidas no seu comprimento de face-a-face de montagem. Não devem ser estendidas, comprimidas ou defletidas lateralmente para permitir seu ajuste aos dutos. Caso a pré-compressão seja uma condição definida e necessária, a Teadit fornecerá, desde de que esteja claramente prevista e informada nos desenhos de projeto da junta, a condição desejada.
- Todas as juntas de expansão fornecidas com guias de fluxo apresentam na parte externa do fole compensador, uma identificação, representada por uma seta no sentido do fluxo para possibilitar uma correta instalação (Figura 16).

Figura 16

8.5. GUIA DE TORQUE DOS PARAFUSOS

Os instaladores devem observar as seguintes recomendações quanto ao torque a ser aplicado aos parafusos.

- As juntas de expansão não-metálicas FREEFLEX®, utilizam em suas instalações parafusos de diâmetro 3/8" para a fixação das barras de aperto. O torque a ser usado é de 2,5kgf.m (18lbs.ft).
- Cuidado especial deve ser tomado com as barras de aperto do fole compensador de modo que seus terminais não se sobreponham e nem fiquem demasiadamente afastados (Figura 17).

Junta de Expansão instalada em Indústria do Segmento Siderúrgico

9. INSPEÇÕES

9.1. INSPEÇÃO ANTES DA PARTIDA DA UNIDADE

- Assegure-se de que existam todos os parafusos de fixação do fole à estrutura metálica. Verifique de que os parafusos de fixação dos flanges tenham sido apertados com o torque adequado.
- Verifique se os eventuais desalinhamentos de montagem estejam de acordo com o que foi previsto no projeto.
- Inspecione toda as superfícies do fole compensador para assegurar-se de que não existem danos de qualquer natureza. Remova qualquer detrito que esteja sobre os mesmos.
- Certifique-se de que todas as travas de transporte (identificadas pela cor amarela) tenham sido retiradas, bem como eventuais proteções superficiais do fole compensador.
- Observe se o sentido do fluxo coincide com o sentido de montagem da junta.
- Verifique se não existe obstrução de qualquer natureza no entorno do fole compensador que possa impedir a livre troca de calor com o meio ambiente, e desta forma causar um sobre-aquecimento.
- Inspecione com particular cuidado toda a transição do isolamento térmico externo, nas imediações da junta, para certificar-se de que estão de acordo com as instruções contidas neste Catálogo, à página 23, figuras 14 e 15.
- Sem prejuízo a outras instruções particulares de instalação, os tópicos acima devem ser rigorosamente seguidos.

9.2. INSPEÇÃO IMEDIATAMENTE APÓS A PARTIDA DA UNIDADE

- Durante a partida da unidade e o respectivo aquecimento da junta de expansão, os diversos componentes desta, entram em um processo de ajuste. Após a estabilização do processo, os diversos parafusos devem ser reapertados, tão breve quanto possível e antes de uma primeira parada da unidade.
- Aperte os parafusos somente com o torque recomendado pela Teadit à página 24.

- Verifique se os reais deslocamentos da junta estão de acordo com o especificado em projeto.
- Mantenha um registro das dimensões antes e depois da partida da unidade para eventuais consultas posteriores, em caso de problemas.
- Particularmente nos primeiros dias de operação, faça um monitoramento constante da superfície externa do fole compensador buscando por algum eventual dano ou descoloração de sua cobertura, que pode ser um indício de excessivo movimento ou temperatura.
- Quando em operação, certifique-se de que as cabeças dos parafusos não toquem a superfície do fole compensador.

9.3. Inspeções rotineiras e de manutenção

Inspeções regulares de manutenção são essenciais para o bom desempenho da juntas de expansão. Um programa rotineiro de inspeção deve incluir, entre outros:

- Inspeção de qualquer depósito de material externo sobre a parte superior do fole compensador, particularmente em juntas de grandes dimensões horizontais. O depósito de materiais como escória de solda, poeira, cavacos de madeira, restos de isolação, etc. podem causar a prematura falha da junta.
- Inspeção de possíveis trincas na estrutura metálica ou vazamentos na conexão do fole compensador com a estrutura metálica, que permita a fuga de gases ou a entrada de ar falso.
- Dobras não previstas do fole compensador sobre si mesmo causando o aparecimento de pontos quentes, que venham a causar uma sobre-temperatura nas camadas mais externas do fole compensador.
- Falta de parafusos de fixação do fole à estrutura metálica.
- Perfurações e/ou cortes superficiais no fole compensador.
- Acúmulo de material particulado no interior do fole.

OBSERVE SEMPRE:

A despeito de sua confiabilidade e durabilidade, juntas de expansão pertencem a um grupo de equipamentos que necessitam de reposição em intervalos de tempo periódicos. Paradas onerosas e inesperadas de unidades podem ser evitadas com um programa de inspeção e substituição periódica dos foles compensadores. Muito embora as juntas de expansão não requeiram um programa de manutenção propriamente dito, elas devem ser inspecionadas regularmente em busca de sinais que evidenciem um dano futuro ou sua degradação.

Um dos primeiros sinais de danos ou degradação de um fole compensador é visível em sua superfície externa: a descoloração ou escamação, dependendo do tipo de acabamento, é um indicativo da necessidade de sua substituição. Mesmo antes que estes sinais se tornem evidentes, uma análise por termografia pode identificar previamente sinais de pontos quentes (hot spots) e áreas potencialmente problemáticas. Devemos ter em mente que a descoloração das superfícies externas também pode ser resultado de um ataque químico (ácido ou cáustico), o qual não pode ser identificado por uma termografia.

9.4. DESCARTE DE ELEMENTOS SUBSTITUÍDOS DAS JUNTAS

- O descarte final dos elementos substituídos da junta de expansão é de responsabilidade do usuário.
- O descarte final deve ser em um local próprio para este fim e de acordo com as disposições legais.
- Não incinere elementos derivados de PTFE, pois sua queima pode exalar gases tóxicos.
- Um particular cuidado é recomendado no trato de elementos de foles compensadores contaminados.

Um roteiro de inspeções deve obrigatoriamente incluir os seguinte pontos:

- A adequada ventilação no entorno da junta de expansão.
- Eventuais faltas de parafusos.
- Sinais de dano ou vazamento no fole (em sistemas que operem em pressões negativas, a entrada de ar falso) junto à estrutura metálica e adjacências.
- Sinais de descoloração e/ou escamação do fole compensador.
- Deterioração da estrutura metálica ou parafusos por corrosão.
- Sempre que possível, uma inspeção interna dos dutos deve ser feita durante paradas da unidade e deve-se implementar um programa de reposição periódica e preventiva de foles que operem em posições críticas da planta, para a prevenção de paradas emergenciais.

10. CAUSAS DE FALHAS

Quando as juntas de expansão FREEFLEX® são projetadas, construídas e instaladas corretamente apresentam um excelente desempenho ao longo de anos de serviço. Entretanto, situações não consideradas no projeto ou a sua instalação inadequada podem provocar um falha prematura. Dentre as causa mais comuns de falhas, podemos destacar:

- Danos ocorridos durante o transporte.
- Manuseio inadequado na instalação.
- Falta de uma proteção adequada no período de armazenagem.
- Danos provocados durante a instalação, tais como respingos de solda, corte do fole compensador, entre outros.
- Instalação da junta com sentido de fluxo invertido.
- Instalação da junta em local diferente daquele previsto no projeto.
- Alteração excessiva no comprimento face-a-face para compensar desalinhamentos não previstos no projeto.
- Não remoção das travas de transporte antes do início da operação.
- Ancoragens, guias e suportes inadequados.
- Temperatura excessivamente alta no lado externo da junta.
- Movimentos superiores aos previstos no projeto.
- Lavagem dos dutos com água (fato não previsto no projeto).
- Isolamento externo do fole compensador.
- Condições de operação diferentes das informadas no projeto.

A SEGUIR APRESENTAMOS UMA SELEÇÃO DE APLICAÇÕES COM PROBLEMAS TÍPICOS:

Problema	Exemplif cação Visual	Descrição da causa / efeitos
Acúmulo de material particulado (pó) na parte externa superior da junta.		Um problema muito comum é o acumulo de materiais particulados (pó, cavacos de madeira, carvão, etc.) na parte superior externa da junta de expansão. A falta de um item de manutenção preventiva que contemple a limpeza periódica desta parte faz com que a junta tenha sua vida útil sensivelmente reduzida. No exemplo, o material depositado é minério de ferro, o que apresenta um peso considerável para o fole compensador, podendo danif cá-lo e reduzindo a capacidade de troca térmica, fazendo o fole trabalhar em temperatura acima do projetado.
Acúmulo de material particulado na parte interna do fole compensador.		Um problema facilmente identif cável bastando apal- par o fole compensador para verif car sua falta de f e- xibilidade. Este problema é causado pela falta ou falha do selo anti-pó instalado entre a guia interna de f uxo e o fole compensador, propiciando que o pó se acumule no interior da junta enrijecendo-a. Este enrijecimento faz com que ela perca sua capacidade de absorção de movimentos, transferindo esforços para os dutos, anco- ragens, equipamentos, etc.

Problema	Exemplif cação Visual	Descrição da causa / efeitos
Soluções improvisadas.		Uma solução de emergência para o caso de furos e pequenos rasgos é o uso de remendos para evitar a entrada de ar falso no sistema. O remendo, sempre que possível, deve ser executado por pessoal especializado e com o mesmo material componente do fole original. Para casos onde ocorram ataques químicos, um pequeno furo ou rasgo compromete totalmente o uso da junta e um novo fole compensador deve ser imediatamente providenciado.
Falta de isolamento térmico interno.		Com o intuito de se conseguir alguma economia, materiais de isolamento térmico são negligenciados, como por exemplo a substituição de f bra cerâmica por f bra de vidro (com menor capacidade de isolamento térmico). Num projeto otimizado, a espessura do isolamento térmico é calculado de forma a garantir que a película de PTFE componente do fole nunca esteja submetida a uma temperatura superior ao seu limite.
Deslocamento ou precipitação do isolamento térmico.		A f xação def ciente das mantas de isolamento térmico internas faz com que as mesmas se desloquem para uma determinada região da junta, normalmente sua parte mais baixa, por ação da gravidade. A região oposta, estando desprotegida, f ca exposta a uma temperatura mais elevada danif cando o fole compensador.
Revestimento externo inadequado.		Alguns revestimentos de tecidos não têm a propriedade de resistir ao ataque de sol, chuva, raios ultra-violetas, entre outros, degradando-se com grande facilidade.
Fixação da chapa de aperto inadequada.		Os parafusos utilizados na f xação das abraçadeiras ou chapas de aperto devem ser periodicamente inspecionados. A limpeza com escovas e o uso de graxas pode aumentar em muito a vida útil destes parafusos.
Ausência da lâmina de PTFE no fole compensador.		Em casos onde haja elementos no f uxo que causem o ataque químico sobre o fole compensador, o uso de uma composição que tenha a película de PTFE como barreira química é imprescindível. Para estes casos é altamente recomendável a utilização de foles compensadores da série Premium.

Problema	Exemplif cação Visual	Descrição da causa / efeitos
Falta da aba de reforço do fole.		A ausência de uma aba de reforço no fole compensador na área de f xação do mesmo, além de evitar o atrito direto do fole com a estrutura metálica provê um adicional isolamento térmico para o calor conduzido pela estrutura metálica.
Inversão do sentido de fixação dos parafusos.		Para juntas de expansão com formato do tipo carretel, os parafusos de f xação dos contrafanges devem ser, preferencialmente do tipo "cabeça escariada" ou "cabeça abaulada" e com suas partes roscadas no sentido contrário ao do fole. Orientações incorretas de parafusos, causam danos imediatos ao fole.
Emendas de fechamento inadequadas.		Uma forma comum de se encontrar emendas de foles compensadores fornecidos abertos é a simples sobreposição das pontas. Esta forma de emenda é totalmente inadequada, pois deixa um caminho para vazamentos. O correto procedimento para o fechamento dos foles compensadores é fornecido em manual que acompanha o produto e deve ser rigorosamente seguido.
Ausência de guia interna.		A ausência de guia interna com fluxos de velocidade igual ou superior a 10 m/s, ou que arrastem material particulado, causam a falha quase que imediata do fole compensador por abrasão.
Fluxo com arraste de condensado.		Fluxos saturados que operem abaixo da temperatura do "ponto de orvalho" (dew-point) apresentam o arraste de condensados que é extremamente danoso ao fole compensador, se não forem previstos no projeto.
Comprimento do face-a-face inadequado		Comprimento da junta é insuf ciente para absorver a amplitude do movimento.

Problema	Exemplif cação Visual	Descrição da causa / efeitos
Fole Rasgado.		Erosão por abrasividade do f uido ou ataque químico por incompatibilidade com f uido.
Trava de Transporte.	605 CITAIN	Não foi retirada a trava de transporte. O movimento do fole está sendo limitado pela trava.
Falta barra de aperto e parafusos.		Foi adaptada uma chapa de aperto com uso indevido de sargentos, não proporcionando o adequado aperto do fole.
Sólido Acumulado		Utilizar guias duplas para controlar o acúmulo de materiais particulados na cavidade interna da estrutura metálica. Vide instruções para sólidos em suspensão no capítulo 4 - Componentes, página 11, itens 4.3 e 4.4

11. SERVIÇOS ON-SITE DE JUNTAS DE EXPANSÃO *FREEFLEX*®

Através do seu Service Center, a Teadit oferece o melhor serviço de campo também em Juntas de Expansão Não-Metálicas - **FREEFLEX**®.

Destacamos os principais:

- Levantamento de Campo, para detectar as reais necessidades de seus clientes a fim de proporcionar economia e precisão na especificação dos produtos.
- Supervisão de Montagem, para certificar ao cliente a correta utilização dos produtos, aumentando sua vida útil.
- Instalação e/ou Fechamento de Junta FREEFLEX® no cliente, para assegurar a melhor performance dos produtos, com garantia do serviço.
- Monitoramento de Juntas de expansão, para oferecer tranquilidade e certeza que os produtos estão atendendo às necessidades para os quais foram especificados.

Consulte nosso site no www.teadit.com.br ou solicite catálogo específico para saber mais sobre o Teadit Service Center. O Service Center da Teadit possui profissionais altamente qualificados porque são treinados na própria fábrica das Juntas de Expansão **FREEFLEX®** e atuam dentro de procedimentos que asseguram a qualidade dos produtos Teadit.

O procedimentos corretos são rigorosamente cumpridos, como atestam inúmeros serviços realizados, dentro da melhor relação custo/ benefício para os clientes.

A Teadit fornece manta e selo anti-pó abertos, para fechamento no campo, aproveitando, quando possível, a estrutura metálica existente, com o objetivo de reduzir custos de manutenção.

Para projetos e aplicações com características especiais, solicitamos o envio dessas informações ao corpo técnico da Teadit Juntas.
Tel. (19) 3765-6501 / Fax. (19) 3225-5614, ou pelo e-mail: juntas@teadit.com.br

Os parâmetros de aplicação indicados neste folheto são típicos. Para cada aplicação específ ca deverá ser realizado um estudo independente e uma avaliação de compatibilidade. Consulte-nos a respeito de recomendações para aplicações específ cas. Um equívoco na seleção do produto mais adequado ou na sua aplicação pode resultar em danos materiais e/ou em sérios riscos pessoais, sendo que a Teadit não se responsabiliza pelo uso inadequado das informações constantes do presente folheto, nem por imprudência, negligência ou imperícia na sua utilização, colocando seus técnicos à disposição dos consumidores para esclarecer dúvidas e fornecer orientações adequadas em relação e aplicações específ cas. Estas específ cações estão sujeitas a mudanças sem prévio aviso, sendo que esta edição substitui todas as anteriores.

FOLHA PARA ESPECIFICAÇÃO DE JUNTAS DE EXPANSÃO *FREEFLEX*®

Complete o formulário abaixo e nos envie por e-mail: juntas@teadit.com.br ou fax: (19) 3225-5614

Cliente:	DDD / Tel:				
Referência:	Fax:				
Contato:	E-mail:				
Cidade:	Estado:				
Condições:	lection 1				
Item	Fluido				
TAG	Pressão (bar)				
Quantidade	Temperatura (°C)				
Diâmetro Externo do Duto (mm)	Dimensão Externa do Duto Retangular (mm)				
Comprimento (mm)	3 ()				
Presença de Particulado () Sim () Não	Presença de Condensado () Sim () Não				
Movimentos:					
Axial compressão (mm)					
Axial extensão (mm)					
Lateral (mm)					
Angular (°)					
Materiais:					
Terminais					
Flanges					
Guia Interna					
Conexões:					
Flanges (norma)					
Ponta para solda					
Notas / Comentários:					

Soluções com Zualidade

Rio de Janeiro, RJ Av. Pastor Martin Luther king Jr., 8939 - CEP. 21530-012 Tel.: (21) 2132-2500 Fax: (21) 2132-2550 • dvrj@teadit.com.br **Call Center, RJ** Tel.: (21) 2132-2700 Fax.: (21) 2132-2750

Campinas, SP Av. Mercedes Benz, 390 - CEP. 13054-750 Tel.: (19) 3765-6501 Fax: (19) 3225-5614 • juntas@teadit.com.br

www.teadit.com.br